EE276: Problem Session #2

- 1. Conditional mutual information vs. unconditional mutual information. Give examples of joint random variables X, Y and Z such that
 - (a) $I(X; Y \mid Z) < I(X; Y)$,
 - (b) $I(X; Y \mid Z) > I(X; Y)$.
- 2. Calculation of typical set. To clarify the notion of a typical set $A_{\epsilon}^{(n)}$ and the smallest set of high probability $B_{\delta}^{(n)}$, we will calculate the set for a simple example. Consider a sequence of i.i.d. binary random variables, X_1, X_2, \ldots, X_n , where the probability that $X_i = 1$ is 0.6 (and therefore the probability that $X_i = 0$ is 0.4).

k	$\binom{n}{k}$	$\sum_{j\leq k} \binom{n}{j}$	$p(x^n) = p^k (1-p)^{n-k}$	$\binom{n}{k} p^k (1-p)^{n-k}$	Cumul. pr.	$-\frac{1}{n}\log p(x^n)$
0	1	1	1.125898×10^{-10}	0.000000	0.000000	1.321928
1	25	26	1.688847×10^{-10}	0.000000	0.000000	1.298530
2	300	326	2.533271×10^{-10}	0.000000	0.000000	1.275131
3	2300	2626	3.799908×10^{-10}	0.000000	0.000001	1.251733
4	12650	15276	5.699862×10^{-10}	0.000007	0.000008	1.228334
5	53130	68406	8.549795×10^{-10}	0.000045	0.000054	1.204936
6	177100	245506	1.282469×10^{-09}	0.000227	0.000281	1.181537
7	480700	726206	1.923704×10^{-09}	0.000925	0.001205	1.158139
8	1081575	1807781	2.885556×10^{-09}	0.003121	0.004326	1.134740
9	2042975	3850756	4.328335×10^{-09}	0.008843	0.013169	1.111342
10	3268760	7119516	6.492503×10^{-09}	0.021222	0.034392	1.087943
11	4457400	11576916	9.738756×10^{-09}	0.043410	0.077801	1.064545
12	5200300	16777216	1.460813×10^{-08}	0.075967	0.153768	1.041146
13	5200300	21977516	2.191220×10^{-08}	0.113950	0.267718	1.017748
14	4457400	26434916	3.286831×10^{-08}	0.146507	0.414225	0.994349
15	3268760	29703676	4.930247×10^{-08}	0.161158	0.575383	0.970951
16	2042975	31746651	7.395371×10^{-08}	0.151086	0.726468	0.947552
17	1081575	32828226	1.109306×10^{-07}	0.119980	0.846448	0.924154
18	480700	33308926	1.663959×10^{-07}	0.079986	0.926435	0.900755
19	177100	33486026	2.495939×10^{-07}	0.044203	0.970638	0.877357
20	53130	33539156	3.743908×10^{-07}	0.019891	0.990529	0.853958
21	12650	33551806	5.615863×10^{-07}	0.007104	0.997633	0.830560
22	2300	33554106	8.423795×10^{-07}	0.001937	0.999571	0.807161
23	300	33554406	1.263569×10^{-06}	0.000379	0.999950	0.783763
24	25	33554431	1.895354×10^{-06}	0.000047	0.999997	0.760364
25	1	33554432	2.843032×10^{-06}	0.000003	1.000000	0.736966

- (a) Calculate H(X).
- (b) With n = 25 and $\epsilon = 0.1$, which sequences fall in the typical set $A_{\epsilon}^{(n)}$? What is the probability of the typical set? How many elements are there in the typical

- set? (This involves computation of a table of probabilities for sequences with k 1's, $0 \le k \le 25$, and finding those sequences that are in the typical set.)
- (c) What is the ratio of the probabilities of the two elements with the highest and lowest probabilities in the typical set $A_{\epsilon}^{(n)}$ for n=25 and $\epsilon=0.1$? What happens to this ratio as n grows? Give an upper bound on this ratio.

 Note that even though the probabilities of the sequences in the typical set can be very different, number of bits to represent $A_{\epsilon}^{(n)}$ per symbol gives a very accurate estimation of the optimal compression rate.
- 3. Random box size. An n-dimensional rectangular box with sides $X_1, X_2, X_3, \ldots, X_n$ is to be constructed. The volume is $V_n = \prod_{i=1}^n X_i$. The edge length l of a n-cube with the same volume as the random box is $l_n = V_n^{1/n}$. Let X_1, X_2, \ldots be i.i.d. uniform random variables over the unit interval [0,1]. Show that the random variable l_n converges to 1/e in probability. How does this compare to the expected edge length E(X)?

Note: To show convergence in probability, we want to show that for any $\epsilon > 0$,

$$P(\{|l_n - \frac{1}{e}| > \epsilon\}) = 0.$$
 (1)

4. **AEP and mutual information**. Let (X_i, Y_i) be i.i.d. $\sim p(x, y)$. We form the log likelihood ratio of the hypothesis that X and Y are independent vs. the hypothesis that X and Y are dependent. What is the limit of

$$\frac{1}{n}\log\frac{p(X^n)p(Y^n)}{p(X^n,Y^n)}?$$