EE276: Problem Session #2 - 1. Conditional mutual information vs. unconditional mutual information. Give examples of joint random variables X, Y and Z such that - (a) $I(X; Y \mid Z) < I(X; Y)$, - (b) $I(X; Y \mid Z) > I(X; Y)$. - 2. Calculation of typical set. To clarify the notion of a typical set $A_{\epsilon}^{(n)}$ and the smallest set of high probability $B_{\delta}^{(n)}$, we will calculate the set for a simple example. Consider a sequence of i.i.d. binary random variables, X_1, X_2, \ldots, X_n , where the probability that $X_i = 1$ is 0.6 (and therefore the probability that $X_i = 0$ is 0.4). | k | $\binom{n}{k}$ | $\sum_{j\leq k} \binom{n}{j}$ | $p(x^n) = p^k (1-p)^{n-k}$ | $\binom{n}{k} p^k (1-p)^{n-k}$ | Cumul. pr. | $-\frac{1}{n}\log p(x^n)$ | |----|----------------|-------------------------------|----------------------------|--------------------------------|------------|---------------------------| | 0 | 1 | 1 | 1.125898×10^{-10} | 0.000000 | 0.000000 | 1.321928 | | 1 | 25 | 26 | 1.688847×10^{-10} | 0.000000 | 0.000000 | 1.298530 | | 2 | 300 | 326 | 2.533271×10^{-10} | 0.000000 | 0.000000 | 1.275131 | | 3 | 2300 | 2626 | 3.799908×10^{-10} | 0.000000 | 0.000001 | 1.251733 | | 4 | 12650 | 15276 | 5.699862×10^{-10} | 0.000007 | 0.000008 | 1.228334 | | 5 | 53130 | 68406 | 8.549795×10^{-10} | 0.000045 | 0.000054 | 1.204936 | | 6 | 177100 | 245506 | 1.282469×10^{-09} | 0.000227 | 0.000281 | 1.181537 | | 7 | 480700 | 726206 | 1.923704×10^{-09} | 0.000925 | 0.001205 | 1.158139 | | 8 | 1081575 | 1807781 | 2.885556×10^{-09} | 0.003121 | 0.004326 | 1.134740 | | 9 | 2042975 | 3850756 | 4.328335×10^{-09} | 0.008843 | 0.013169 | 1.111342 | | 10 | 3268760 | 7119516 | 6.492503×10^{-09} | 0.021222 | 0.034392 | 1.087943 | | 11 | 4457400 | 11576916 | 9.738756×10^{-09} | 0.043410 | 0.077801 | 1.064545 | | 12 | 5200300 | 16777216 | 1.460813×10^{-08} | 0.075967 | 0.153768 | 1.041146 | | 13 | 5200300 | 21977516 | 2.191220×10^{-08} | 0.113950 | 0.267718 | 1.017748 | | 14 | 4457400 | 26434916 | 3.286831×10^{-08} | 0.146507 | 0.414225 | 0.994349 | | 15 | 3268760 | 29703676 | 4.930247×10^{-08} | 0.161158 | 0.575383 | 0.970951 | | 16 | 2042975 | 31746651 | 7.395371×10^{-08} | 0.151086 | 0.726468 | 0.947552 | | 17 | 1081575 | 32828226 | 1.109306×10^{-07} | 0.119980 | 0.846448 | 0.924154 | | 18 | 480700 | 33308926 | 1.663959×10^{-07} | 0.079986 | 0.926435 | 0.900755 | | 19 | 177100 | 33486026 | 2.495939×10^{-07} | 0.044203 | 0.970638 | 0.877357 | | 20 | 53130 | 33539156 | 3.743908×10^{-07} | 0.019891 | 0.990529 | 0.853958 | | 21 | 12650 | 33551806 | 5.615863×10^{-07} | 0.007104 | 0.997633 | 0.830560 | | 22 | 2300 | 33554106 | 8.423795×10^{-07} | 0.001937 | 0.999571 | 0.807161 | | 23 | 300 | 33554406 | 1.263569×10^{-06} | 0.000379 | 0.999950 | 0.783763 | | 24 | 25 | 33554431 | 1.895354×10^{-06} | 0.000047 | 0.999997 | 0.760364 | | 25 | 1 | 33554432 | 2.843032×10^{-06} | 0.000003 | 1.000000 | 0.736966 | - (a) Calculate H(X). - (b) With n = 25 and $\epsilon = 0.1$, which sequences fall in the typical set $A_{\epsilon}^{(n)}$? What is the probability of the typical set? How many elements are there in the typical - set? (This involves computation of a table of probabilities for sequences with k 1's, $0 \le k \le 25$, and finding those sequences that are in the typical set.) - (c) What is the ratio of the probabilities of the two elements with the highest and lowest probabilities in the typical set $A_{\epsilon}^{(n)}$ for n=25 and $\epsilon=0.1$? What happens to this ratio as n grows? Give an upper bound on this ratio. Note that even though the probabilities of the sequences in the typical set can be very different, number of bits to represent $A_{\epsilon}^{(n)}$ per symbol gives a very accurate estimation of the optimal compression rate. - 3. Random box size. An n-dimensional rectangular box with sides $X_1, X_2, X_3, \ldots, X_n$ is to be constructed. The volume is $V_n = \prod_{i=1}^n X_i$. The edge length l of a n-cube with the same volume as the random box is $l_n = V_n^{1/n}$. Let X_1, X_2, \ldots be i.i.d. uniform random variables over the unit interval [0,1]. Show that the random variable l_n converges to 1/e in probability. How does this compare to the expected edge length E(X)? **Note:** To show convergence in probability, we want to show that for any $\epsilon > 0$, $$P(\{|l_n - \frac{1}{e}| > \epsilon\}) = 0.$$ (1) 4. **AEP and mutual information**. Let (X_i, Y_i) be i.i.d. $\sim p(x, y)$. We form the log likelihood ratio of the hypothesis that X and Y are independent vs. the hypothesis that X and Y are dependent. What is the limit of $$\frac{1}{n}\log\frac{p(X^n)p(Y^n)}{p(X^n,Y^n)}?$$