EE276: Problem Session #3 Problems

1. AEP.

Let X_i be iid $\sim p(x), x \in \{1, 2, ..., m\}$. Let $\mu = EX$, and $H = -\sum p(x) \log p(x)$. Let $A^n = \{x^n \in \mathcal{X}^n : |-\frac{1}{n} \log p(x^n) - H| \le \epsilon\}$. Let $B^n = \{x^n \in \mathcal{X}^n : |\frac{1}{n} \sum_{i=1}^n X_i - \mu| \le \epsilon\}$.

- (a) Does $\Pr\{X^n \in A^n\} \longrightarrow 1 \text{ as } n \to \infty$?
- (b) Does $\Pr\{X^n \in A^n \cap B^n\} \longrightarrow 1 \text{ as } n \to \infty$?
- (c) Show $|A^n \cap B^n| \leq 2^{n(H+\epsilon)}$, for all n.
- (d) Show $|A^n \cap B^n| \ge (\frac{1}{2})2^{n(H-\epsilon)}$, for *n* sufficiently large.
- 2. Uniquely decodable and instantaneous codes. Let $L = \sum_{i=1}^{m} p_i l_i^{100}$ be the expected value of the 100th power of the word lengths associated with an encoding of the random variable X. Let $L_1 = \min L$ over all instantaneous codes; and let $L_2 = \min L$ over all uniquely decodable codes. What inequality relationship exists between L_1 and L_2 ?
- 3. Classes of codes. Consider the code $\{0, 01\}$
 - (a) Is it instantaneous?
 - (b) Is it uniquely decodable?
 - (c) Is it nonsingular?
- 4. Data compression. Find an optimal set of binary codeword lengths l_1, l_2, \ldots (minimizing $\sum p_i l_i$) for an instantaneous code for each of the following probability mass functions:
 - (a) $\mathbf{p} = (\frac{10}{41}, \frac{9}{41}, \frac{8}{41}, \frac{7}{41}, \frac{7}{41})$ (b) $\mathbf{p} = (\frac{9}{10}, (\frac{9}{10})(\frac{1}{10}), (\frac{9}{10})(\frac{1}{10})^2, (\frac{9}{10})(\frac{1}{10})^3, \ldots)$

5. Slackness in the Kraft inequality.

- (a) In the lecture, we have seen Kraft inequality for prefix codes over the alphabet $\{0, 1\}$ with alphabet size D = 2. The proof used a binary tree, where the branches represent the symbols of the codeword and each codeword is represented by a leaf on the tree. For prefix codes over an alphabet of size D, what would be the degree of the tree?
- (b) In the lecture, we have observed that when D = 2, an optimal code satisfies Kraft inequality with equality. Is this still true when D > 2?
- (c) A prefix code has word lengths l_1, l_2, \ldots, l_m which satisfy the strict inequality

$$\sum_{i=1}^{m} D^{-l_i} < 1$$

The code alphabet is $\mathcal{D} = \{0, 1, 2, \dots, D-1\}$. Show that there exist arbitrarily long sequences of code symbols in \mathcal{D}^* which cannot be decoded into sequences of codewords.