
EE276 Information Theory Lecture 8 - 02/01/2024

Lecture 8: Continuous Random Variables
Lecturer: Tsachy Weissman

1 Information of Continuous Random Variables

The channel capacity theorem also holds for continuous valued channels, which are very important in a
number of practical scenarios, e.g., in wireless communication. But before studying such channels, we need
to extend notions like entropy and mutual information for continuous random variables.

Definition: The relative entropy between two probability density functions f and g is given by

D(f ||g) =

∫
f(x) log

f(x)

g(x)
dx.

Exercise: Show that D(f ||g) ≥ 0 with equality if and only if f = g.

Proof. Observe that that

D(f ||g) =

∫
f(x) log

f(x)

g(x)
dx

= −
∫
f(x) log

g(x)

f(x)
dx

= −E
[
log

g(x)

f(x)

]
≥ − logE

[
g(x)

f(x)

]
= − log

∫
f(x)

g(x)

f(x)
dx

= − log 1

= 0.

Equality occurs in the manner of Jensen’s when f = g.

Definition: The mutual information between X and Y that have a joint probability density function fX,Y
is

I(X;Y ) = D(fX,Y ||fXfY ).

Definition: The differential entropy of a continuous random variable X with probability density function
fX is

h(X) = −
∫
fX(x) log fX(x) dx = E [− log fX(X)]

If X,Y have joint density fX,Y , the conditional differential entropy is

h(X|Y ) = −
∫
fX,Y (x, y) log fX|Y (x|y) dx dy = E[− log fX|Y (X|Y )],

and the joint differential entropy is

h(X,Y ) = −
∫
fX,Y (x, y) log fX,Y (x, y) dx dy = E[− log fX,Y (X,Y )].
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1.1 Exercises

Exercise 1 . Show that
h(X|Y ) ≤ h(X)

with equality iff X and Y are independent.

Proof. This follows from exercise 2 below combined with the fact that I(X;Y ) ≥ 0 which holds since
the relative entropy is non-negative (see exercise above). The equality holds exactly when fX,Y (x, y) =
fX(x)fY (y), i.e. when X and Y are independent.

Exercise 2. Show that

I(X;Y ) = h(X)− h(X|Y )

= h(Y )− h(Y |X)

= h(X) + h(Y )− h(X,Y ).

Proof.

I(X;Y ) =

∫
fX,Y (x, y) log

fX,Y (x, y)

fX(x)fY (y)
dxdy

=

∫
fX,Y (x, y) log

fX,Y (x, y)

fX(x)
dxdy −

∫
fX,Y (x, y) log fY (y)dxdy

=

∫
fX(x)

[∫
fY |X(y|x) log fY |X(y|x)dy

]
dx−

∫
fY (y) log fY (y)dy

= h(Y )− h(Y |X).

Symmetrically the same can be shown for I(X;Y ) = H(X)−H(X|Y ). Also

I(X;Y ) =

∫
fX,Y (x, y) log

fX,Y (x, y)

fX(x)fY (y)
dxdy

=

∫
fX,Y (x, y) log fX,Y (x, y)dxdy −

∫
fX,Y (x, y) log fX(x)dxdy −

∫
fX,Y (x, y) log fY (y)dxdy

= h(X,Y )− h(X)− h(Y ).

Exercise 3. Show that

h(X + c) = h(X).

and

h(c ·X) = h(X) + log|c|, c 6= 0.

Proof. We will combine them and prove that h(aX + b) = h(X) + log|a| whenever a 6= 0. Let Y = aX + b.
Then the pdf for Y can be written as

fY (y) =
1

|a|
fX

(
y − b
a

)
Thus,

h(aX + b) = h(Y ) = −
∫
fY (y) log fY (y) dy
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= −
∫

1

|a|
fX

(
y − b
a

)
log

(
1

|a|
fX

(
y − b
a

))
dy

Changing variable to x = (y − b)/a (and reversing limits if a < 0),

h(aX + b) = −
∫
fX(x) log

(
1

|a|
fX(x)

)
dx

= −
∫
fX(x) log

(
1

|a|

)
dx−

∫
fX(x) log (fX(x)) dx

= h(X) + log|a|

1.2 Examples

Example I: Differential entropy of a uniform random variable U ∼ U(a, b).

• The pdf of an uniform random variable is

fX(x) =

{
1
b−a a ≤ x ≤ b
0 otherwise

The differential entropy is simply:

h(X) = E[− log fX(X)] = log(b− a)

• Notice that the differential entropy can be negative or positive depending on whether b−a is less than
or greater than 1. In practice, because of this property, differential entropy is usually used as means
to determine mutual information and does not have much operational significance by itself.

Example II: Differential entropy of a Gaussian random variable X ∼ N (0, σ2).

• The pdf of a Gaussian random variable is f(x) = 1√
2πσ2

e−
1

2σ2 x
2

.

The differential entropy is:

h(X) = E[− log f(X)]

For simplicity, convert the base to e:

h(X) =
1

ln 2
E[− ln f(X)]

=
1

ln 2
E
[

1

2
ln 2πσ2 +

1

2σ2
X2

]
=

1

ln 2

[
1

2
ln 2πσ2 + E

[
1

2σ2
X2

]]
=

1

ln 2

[
1

2
ln 2πσ2 +

1

2σ2
σ2

]
=

1

ln 2

[
1

2
ln 2πeσ2

]
=

1

2
log 2πeσ2

• Per Exercise 3, differential entropy is invariant to constant shifts. Therefore this expression represents
the differential entropy of all Gaussian random variables regardless of mean.
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• Claim: The Gaussian distribution has maximal differential entropy, i.e., if X ∼ fX with second moment
E[X2] ≤ σ2 and G ∼ N (0, σ2) then h(X) ≤ h(G). Equality holds if and only if X ∼ N (0, σ2).

Proof:

0 ≤ D(fX‖G) = E
[
log

fX(X)

fG(X)

]
= −h(X) + E

[
log

1

fG(X)

]
D(fX‖G) = −h(X) + E

[
log

1√
2πσ2

+
X2

2σ2

ln 2

]

Because the second moment of X is upper bounded by the second moment of G:

0 ≤ D(fX‖G) ≤ −h(X) + E

[
log

1√
2πσ2

+
G2

2σ2

ln 2

]

≤ −h(X) + E
[
log

1

fG(G)

]
= −h(X) + h(G)

Rearranging:

h(X) ≤ h(G)

Equality holds when D(fX‖G) = 0, i.e., when X ∼ N (0, σ2).
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