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Lecturer: Tsachy Weissman

In this lecture, we will review the concepts of joint source-channel coding and give an example of Gaussian
source and Gaussian channel. We will also discuss an application of information theory to machine learning.

1 Review of Joint Source-Channel Coding (JSCC)

A quick summary of the concepts

1. The model:

Figure 1: JSCC Problem Schematic

2. Rate: rate = N
n

source symbols
channel use

3. Distortion: E[d(UN , V N )]

4. Achievability: (ρ,D) is achievable if ∀ϵ > 0, ∃schemes with N
n ≥ ρ− ϵ and E[d(UN , V N )] ≤ D + ϵ

5. ”Source-channel Separation” theorem: (ρ,D) is achievable if and only if ρR(D) ≤ C.

Figure 2: Example Rate Distortion Curve
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2 Example: Gaussian source & Gaussian channel

Last class we gave an example of binary source & binary channel, this class we will introduce an example of
Gaussian source: U ∼ N (0, σ2) and AWGN channel with transmission power constraint P, the distortion of
which is defined as squared error.

Figure 3: AWGN Channel

Recall: R(D) = 1
2 log

σ2

D , 0 < D ≤ σ2. C = 1
2 log(1 + P).

Then, by JSCC we get

Figure 4: Rate-Distortion Curve for AWGN Channel

Observe that zero distortion is not possible for any positive rate since the source is continuous valued.

Consider the following scheme:
Rate: ρ = 1;

Transmit: Xi =
√

P
σ2Ui (here we rescale Ui because the power of Xi is constrained by P; however,

var(U) = σ2. In order to satisfy the power constraint, we rescale Ui to get Xi);

Receive: Yi = Xi + Zi =
√

P
σ2Ui + Zi;

Reconstruction: Vi = E[Ui|Yi] =

√
P/σ2σ2

(
√

P/σ2)2σ2+1
Yi.
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Expected distortion achieved: E[(Ui − Vi)
2] = σ2

(
√

P/σ2)2σ2+1
= σ2

1+P

As can be seen, this simple scheme gives the optimum solution. This ‘simple scheme’ is rather an
exception and typically we need non-trivial coding effort when ρ ̸= 1 in this case and even for ρ = 1 with
general sources and channels. This is illustrated by the following exercise:

Consider the following “symbol-by-symbol” scheme for ρ = 1:
Transmit: Xi = f(Ui);
Reconstruction: Vi = g(Yi).
Exercise: for a memoryless source & channel, the symbol-by-symbol scheme is optimal if g(·) is
one-to-one (injective) and I(U ;V ) achieves min

E[d(U,V )]≤D
I(U ;V ) and I(X;Y ) achieves max

P (X | Y )
I(X;Y )

under the joint distribution of (U,X, Y, V ) when X = f(U) and V = g(Y ).
Proof Sketch:
Here we have a Markov Chain: U −X − Y − Z
Then, by the properties of Markov Chain I(U ;Y ) ≤ I(X;Y ), but since X = f(U), we also have
by data-processing inequality that I(X;Y ) = I(f(U);Y ) ≤ I(U ;Y ) and hence we have I(X;Y ) =
I(U ;Y ). Now, by using that g(·) is a one-to-one function, we also have I(U ;V ) = I(U ; g(Y )) =
I(U ;Y ). Thus, we have shown that given conditions imply that I(U ;V ) = I(X;Y ). But, based on
the conditions in the optimization problem given above, and by our formulations of Channel Coding
Theorem and Rate Distortion, we can identify I(X;Y ) = C and I(U ;V ) = R(D). Thus, for these

set of conditions, we know by JSSC that there exist a scheme with ρ = C
R(D) = I(X;Y )

I(U ;V ) = 1 which is

optimal. Thus, these conditions are sufficient for an optimal “symbol-by-symbol” scheme.

You can apply this exercise and see for yourself that the these conditions exist for both (Binary Source,
Binary Channel) example as well as (Gaussian Source, Gaussian Channel) example. For instance, in the
second case, we saw above that the “simple scheme” is optimal. For this simple scheme, X = f(U) =√

P
σ2U and X ∼ N (0,P), but remember that we have already shown that for Gaussian channel C is achieved

when X ∼ N (0,P), that is, X = f(U) in our scheme indeed maximizes I(X;Y ). Similarly, all other relations
can be established in the two examples.
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