EE276 Information Theory Lecture 11 - 02/08/2024

Lecture 10: Channel Coding Theorem: Converse Part

Lecturer: Tsachy Weissman

In this lecture!, we will continue our discussion on channel coding theory. In the previous lecture, we proved
the direct part of the theorem, which suggests if R < C!), then R is achievable. Now, we are going to prove
the converse statement: If R > C'), then R is not achievable. We will also state some important notes
about the direct and converse parts.

1 Recap: Communication Problem

Recall the communication problem:

Memoryless Channel

J ~ Unif{1,2,..., M} — [encoder| X5 P(Y|X) X% [decoder | —» J

_ _ logM bits
e Rate =R = n channel use

e Probability of error = P, = P(J # J)

The main result is C = C) = maxp, I(X;Y). Last week, we showed R is achievable if R < C!). In this
lecture, we are going to prove that if R > C'), then R is not achievable.

2 Fano’s Inequality

Theorem (Fano’s Inequality). Let X be a discrete random variable and X = X(Y) be a guess of X based
onY. Let P, = P(X # X). Then,

H(X|Y) < hy(P.) + P.log(|X| — 1)

where hy is the binary entropy function. R
Proof. Let V' =1 ie. Vis1if X # X and 0 otherwise.

{x#X}

H(X|Y) < H(X,V[Y) (1)
= H(V|Y)+ H(X|V,Y) (2)
<HWV)+HX|V,Y) (3)
=H(V)+ Y H(X[V=0Y=y)P(V=0Y=y) (4)
=H(V)+ Y H(X|[V=0,Y=y)P(V=0,Y=y)+ > HX|V=1Y=y)P(V=1Y=y) (5
=H(V)+ > H(X[V=1,Y=y)P(V=1,Y=y) (6)
< H(V) +log(|X| - 1)) P(V=1,Y =y) (7)
= H(V) +log(|X] - 1)P(V =1) (8)
= ha(Pe.) + P.log(|X| — 1) 9)

1 Reading: Chapter 7.9 and 7.12 of Cover, Thomas M., and Joy A. Thomas. Elements of information theory. Wiley, 2006.



where (1) is from data processing inequality, (2) is due to chain rule, (3) is because conditioning can only

reduce (or not change) entropy. (4) directly follows from the definition of conditional entropy. (6) is because

when V =0, X = X and X is a function of Y, so H(X|V =0,Y =y) = 0. Note that H(X|V =1,Y = y)

is maximized when P(X|V = 1,Y = y) is uniformly distributed, which yields to log(]|X| — 1). Hence, (7)

follows. The next step is just law of total probability, and completes the proof. O]
Note a weaker version of Fano’s inequality is

H(X|Y) <1+ P.log|X| (10)
which will be useful later in proving the converse theorem. This is also stated as

_HX|Y) -1

log X (11)

Fano’s inequality basically says that if H(X|Y) is large, i.e., if given Y, X has a lot of uncertainty, then any
estimator of X based on Y must have a large probability of error.

3 Proof of Converse Part

For any scheme,

logM — H(J|Y") = H(J) — H(J|Y™) (12)
=I1(J;Y") (13)
= H(Y™) — H(Y"|J) (14)
= anﬂ(myifl) — H(Y;|Y"1 ) (15)
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H(Y;) = HYi|[Y"™, X;, J) (17)
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=Y _HY) - HYi|X) (18)
=iumm> (19)
< r,ll_c(l) (20)

where (12) is because J is uniformly distributed, (13), (14) and (19) are directly from the definition of
mutual information, (15) is from the properties of joint/conditional entropy, (16) and (17) are due to the
fact that conditioning can only decrease (or not change) entropy. Since the channel is memoryless (i.e.
Yi—X,—(Y"1J)), (18) follows. Next, (20) is because the capacity is the maximum of the mutual infor-
mation between input and output.



Now, for schemes with IOgTM > R,

H ") —
e = 7(J|Y )1 (21)
log M
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_qone (23)
logM  logM
ch 1
>1—— - — 24
- R nR (24)
n—oo C(I)
1— ) 25

where (21) is due to weaker version of Fano’s inequality, (22) is from the result obtained with (20), and (24)
is because % > R. The result shows that when R > C), there exists a positive lower bound on the
probability of error, so R is not achievable. O

4 Communication with Feedback

Now assume X; is a function of both J and Y*~! (previously, it was a function of only J), so the encoder
knows what decoder receives. This is obviously a stronger encoder, as it has more information. However,
it can be verified that the proof of the converse theorem is valid for memoryless channels with feedback, as
well. This can be directly seen from that the proof uses the properties of the channel only at Eq. (18), which
also holds when feedback is allowed (because the Markov property still holds: Y;—X,—Y =1 .J). Moreover,
achievability result is obvious as the feedback can be ignored. Therefore, the maximum achievable rate
remains the same with feedback.

On the other hand, this setting increases the reliability of the system, i.e. the probability of error vanishes
faster; and the schemes become simpler.

Example. Recall the binary erasure channel (BEC) shown in Fig. 1. Also recall that the capacity of
BEC is C = 1 — p bits/channel use where p is the erasure probability. Consider a binary erasure channel
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Figure 1: Binary erasure channel (image from Wikipedia)

with feedback. A very simple scheme that achieves capacity would be to repeat each information bit until
it is correctly received by the decoder. With this scheme the probability that a bit is correctly sent through

the channel at one attempt is 1 — p, at two attempts is p(1 — p), and so on. Hence, it follows a geometric

distribution, whose mean is ﬁ. Therefore, we have

1 channel uses per information bit
—-p



Equivalently, R = C. This approach can be extended to all memoryless channels?.
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