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goal

expose the elements, beauty and utility of the science of
information (and, specifically, information theory)

information scientific thinking (seeing the world through
the lens of information)

whet your appetite for subsequent learning



It’s all iInformation

* A book you write
e Ship of Theseus

e You



what is information?
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Definition of iINFORMATION
1 :the communicarion ar raceprion of <nowlezge or intelligence

2 a{l):knowledge obtained from investigation. study, or instruction (2) : WTELLIGENCE, NEWS
3) i Ealls, DALA
b : the alltribule inherent in and commumiczled by one ol twe crmore zgligrnalive
seguences or arrangements of scmething (such as nuclectides in DNA or bingry digits in @
compuler program) Lthal preduce specfic effecs
c(1): g signal or character {as in a communicdl on system o compuler) recresenting dala
(2): someth ng (such as g message, experimeartal dala, or @ picturg) wnch justifies change
In a consiruct (such @s a plan ur Ltheory) thal represents physical or menlzl experence or
analher ranstrucl
d:a quantitarve measure nf the canrent of information; sp2aifically : a numerical quant ty
that measures the uncertainry in the outcome of an axperimart ta he perfarmea

3 :the acrofirforming against a parson
4 :aformalaccusation af acrime maze by a prasecuting off cer ac distinglLished fram an
indictment presented hy a grand jury
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what is communication?
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Claude Elwood Shannon
1948

“A Mathematical Theory of Communication”
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Shannon’s genius: |

e the question

e the answer



a bit about the bi

Oor

In other words: digitization!




2 pillars of the science of information
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e succinct representation of in bits (compression)

o effective and reliable communication of bits (across unreliable media)

communicare with others.

| will effectively

communicate with others. |
| will effectively g
communicate with ofhers.
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Shannon overed the two,
showed reliable communication of bits is generally possible,
and that combining the two is optimal



Shannon’s genius: |

 Characterizing what is the best that can be achieved with bits

e Showing that bits can be communicated reliably over unreliable
channels

e Showing that this bit paradigm is optimal



INFORMATION

SOURCE

TRANSMITTER

>

SIGNAL

NOISE
SOURCE

RECEIVED
SIGNAL

v

TINATION




INFORMATION
SOURCE TRANSMITTER v T

RECEIVED
SIGNAL SIGNAL

NOISE
SOURCE




and everything else

neurons
genetics/genomics
language

essentially all our technologies for: storage, communication,
streaming, computation, ...

etc.



course theme I: communication

representation
(compression)

communication

reliable
communication



course theme lI: concrete schemes

e Shannon
 Huffman

* Arithmetic

e Lempel-Ziv (GZIP)
e JPEG

e Polar codes for reliable communication (5G)



course theme llI: measures of information

* entropy

* relative entropy
 mutual information
e Shannon capacity

e rate-distortion function



approximate lecture schedule

Introduction and motivating examples

Information measures: entropy, relative entropy and mutual information
AEP and typicality

Variable length lossless compression: prefix and Shannon codes

Kraft inequality and Huffman coding

Lempel Ziv compression

Reliable communication and channel capacity

Information measures for continuous random variables

AWGN channel

Joint AEP and Channel coding theorem

Channel coding theorem converse

Polar codes

Lossy compression and rate-distortion theory

Method of types and Sanov’s theorem

Strong, conditional and joint typicality

Direct and converse in rate distortion theorem

Joint source-channel coding and the separation theorem

Distributed compression and multi-terminal information theory

A bit about relations to other areas, quantum information theory, etc. if time remains



course elements

lectures (Tue, Thu, 12:00-1:20pm)

HW (6pm Fridays, submitted on Gradescope)
recitations (please fill in survey form on Ed by tomorrow)
midterm (Friday, February 7th, 5-7pm)

final (Friday, March 21st, 12:15-3:15pm)



re the lectures and material

formal prereq.: first course in probability

you’ll be held ‘accountable’ only to material covered in
lectures and HWs

course website will provide additional resources,
including videos of lectures from previous years, lectures
and material from EE274, and a book

parts of these will be referred to for further reading/
viewing



ENWILEY

s o book

INFORMATION
THEORY

\ = e

Abs
e 3rd edition close to completion El Gamal

By Prof. Abbas El Gamal

e Substantial revision, distillation and modernization of
g Thomas M. Cover

the material
n Joy A. Thomas
L

* We are giving you access
* Please keep to yourselves

* Prof. El Gamal will appreciate your comments,
suggestions, typo catches, etc. (up to 5 bonus points..)



grade elements

HW: 20%
midterm: 35%
final: 45%

up to 5% bonus for feedback on book



staff

wAe o |nstructor: Tsachy Weissman, OH Thursdays 1:30-3pm or by
| appointment (starting next week)

i . TA: Divija Hasteer
 TA: Jiwon Jeong

 TA:Yifan Zhu

e course supporter: Abhiram Rao Gorle

e details including emails, office hours, etc. on the course
website

 (Gradescope and Ed for the course accessible via website



questions?



example I:
lossless compression of
a ternary source

Source is Uy, Us, - - - ey - {A, B, C}

P(U=A)=0.7, P(U =B)=0.15 P(U=C)=0.15

how can/should we represent the source succinctly with bits?



first code suggestion:

A —=
B — 10
C — 11

Let L denote the average number of bits per symbol. IFor the coding above,

L=0.7x1+0.15x2+0.15 x 2 = 1.3 bits/symbol

note how easily we can decode, e.g.:

001101001101011

(thanks to the “prefix condition” satisfied by this code)



second code suggestion:

pair | probability | Code word | Num. Bits Used
AA 0.49 0 1
AB 0.105 100 3
AC 0.105 111 3
BA 0.105 101 3
CA 0.105 1100 4
BB 0.0225 110100 6
BC 0.0225 110101 6
CB 0.0225 110110 6
CC 0.0225 110111 6

L:S(U.49><14U.10-5><3><3+0.1UZ)><4+O.U‘2.25><6><4)

= 1.1975 bits/svinbol



we’ll see:

source “entropy”:

1
Zp — ~ 1.1829
ueU )

“converse” result: for any compressor H ( U) S E

“direct” result: for any eps>0 there exists a compressor satisfying

L<HU)+e



example Ii: binary source and channel

Source: U = {U/1, Uy, ...} where Pr|U; =0] = Pr[lU; = 1] = % The U;'s are 1.1.d.

Channel: The channel flips cach bit given to it with probability ¢ < 15 We define the channel input
to be X = {X;}, the channel noise to be W = {W;} and the channel output to be ¥ = {Y;} such that:

Wi ~ Ber(q)
Yi = Xi @0 W

The W, arc i.i.d. and the X; arc functions of the input source sequence U,

Probability of error per source bit: /I’



encoding scheme 1:

trivial encoding: X ] — U 7
yields: P 6 — q

the rate of this scheme is 1 information bits/channel use



Encoding Scheme 2. We can repeal each source bit three times:

U=0110...
A=000T1T1T1111000 ...

P.=3¢°(1—q)+q° < g

the rate of this scheme is 1/3 information bits/channel use



can repeat K times (repetition coding)

as K grows we’ll get:

arbitrarily small Pe

at the cost of vanishing rate



Shannon 1948: 34 R > 0 and schemes with rate > R satistying P, — 0

C = “Channel Capacity” = largest such R



Shannon 1948: 34 R > 0 and schemes with rate > R satistying P, — 0

C = “Channel Capacity” = largest such R

In our example:

C(q) =1 - h(Q)
1 1
h(g) = H(Ber(g)) = glog 7+ (1~ a)log 7—

The figure below plots h{q) for q € [0.1].
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Shannon 1948: 34 R > 0 and schemes with rate > R satistying P, — 0

C = “Channel Capacity” = largest such R

Here too we’ll see:

a “converse” part:
no scheme can communicate reliably
at a rate above C(q)

a “direct” part:
for any rate below C(qg), there exist
schemes that can communicate
reliably at that rate

practical schemes that deliver on the promise



questions?



