
EE276: Homework #2
Due on Friday Jan 24, 6pm - Gradescope entry code: 5K35EZ

1. Data Processing Inequality.
The random variables X, Y and Z form a Markov triplet (X − Y − Z) if p(z|y) =
p(z|y, x), and or, equivalently, if p(x|y) = p(x|y, z). If X, Y , Z form a Markov triplet
(X − Y − Z), show that:

(a) H(X|Y ) = H(X|Y, Z) and H(Z|Y ) = H(Z|X, Y )

(b) H(X|Y ) ≤ H(X|Z)
(c) I(X;Y ) ≥ I(X;Z) and I(Y ;Z) ≥ I(X;Z)

(d) I(X;Z|Y ) = 0

where the conditional mutual information of random variables X and Y given Z is
defined by

I(X;Y |Z) = H(X|Z)−H(X|Y, Z)

=
∑
x,y,z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)

2. Two looks.
LetX, Y1, and Y2 be binary random variables. Assume that I(X;Y1) = 0 and I(X;Y2) =
0.

(a) Does it follow that I(X;Y1, Y2) = 0? Prove or provide a counterexample.

(b) Does it follow that I(Y1;Y2) = 0? Prove or provide a counterexample.

3. Prefix and Uniquely Decodable codes
Consider the following code:

u Codeword
a 1 0
b 0 0
c 1 1
d 1 1 0

(a) Is this a Prefix code?

(b) Argue that this code is uniquely decodable, by describing an algorithm for the
decoding.
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4. Relative entropy and the cost of miscoding. Let the random variable X be
defined on {1, 2, 3, 4, 5, 6} according to pmf p. Let p and another pmf q be

Symbol p(x) q(x) C1(x) C2(x)
1 1/2 1/2 0 0
2 1/8 1/4 100 10
3 1/8 1/16 101 1100
4 1/8 1/16 110 1101
5 1/16 1/16 1110 1110
6 1/16 1/16 1111 1111

(a) Calculate H(X), D(p||q) and D(q||p).
(b) The last two columns above represent codes for the random variable. Verify that

codes C1 and C2 are optimal under the respective distributions p and q.

(c) Now assume that we use C2 to code X. What is the average length of the code-
words? By how much does it exceed the entropy H(X), i.e., what is the redun-
dancy of the code?

(d) What is the redundancy if we use code C1 for a random variable Y with pmf q?

5. (Strong) LLN and AEP. Let X1, X2, . . . be independent identically distributed ran-
dom variables drawn according to the probability mass function p(x), x ∈ {1, 2, . . . ,m}.
Thus p(x1, x2, . . . , xn) =

∏n
i=1 p(xi). We know that − 1

n
log p(X1, X2, . . . , Xn) → H(X)

in probability. Let q(x1, x2, . . . , xn) =
∏n

i=1 q(xi), where q is another probability mass
function on {1, 2, . . . ,m}.

(a) Evaluate lim− 1
n
log q(X1, X2, . . . , Xn), where X1, X2, . . . are i.i.d. ∼ p(x).

(b) Now evaluate the limit of the log likelihood ratio 1
n
log q(X1,...,Xn)

p(X1,...,Xn)
when X1, X2, . . .

are i.i.d. ∼ p(x). Thus the odds favoring q are exponentially small when p is true.

6. AEP. Let Xi for i ∈ {1, . . . , n} be an i.i.d. sequence from the p.m.f. p(x) with
alphabet X = {1, 2, . . . ,m}. Denote the expectation and entropy of X by µ := E[X]
and H := −

∑
p(x) log p(x) respectively.

For ϵ > 0, recall the definition of the typical set

A(n)
ϵ =

{
xn ∈ X n :

∣∣∣∣− 1

n
log p(xn)−H

∣∣∣∣ ≤ ϵ

}
and define the following set

B(n)
ϵ =

{
xn ∈ X n :

∣∣∣∣∣ 1n
n∑

i=1

xi − µ

∣∣∣∣∣ ≤ ϵ

}
.

In what follows, ϵ > 0 is fixed.
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(a) Does P
(
Xn ∈ A

(n)
ϵ

)
→ 1 as n → ∞?

(b) Does P
(
Xn ∈ A

(n)
ϵ ∩B

(n)
ϵ

)
→ 1 as n → ∞?

(c) Show that for all n,
|A(n)

ϵ ∩B(n)
ϵ | ≤ 2n(H+ϵ).

(d) Show that for all n sufficiently large:

|A(n)
ϵ ∩B(n)

ϵ | ≥
(
1

2

)
2n(H−ϵ).

7. An AEP-like limit and the AEP (Bonus)

(a) Let X1, X2, . . . be i.i.d. drawn according to probability mass function p(x). Find
the limit in probability as n → ∞ of

p(X1, X2, . . . , Xn)
1
n .

(b) Let X1, X2, . . . be an i.i.d. sequence of discrete random variables with entropy
H(X). Let

Cn(t) = {xn ∈ X n : p(xn) ≥ 2−nt}

denote the subset of n-length sequences with probabilities ≥ 2−nt.

i. Show that |Cn(t)| ≤ 2nt.

ii. What is limn→∞ P (Xn ∈ Cn(t)) when t < H(X)? And when t > H(X)?
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