EE276: Homework #2

Due on Friday Jan 24, 6pm - Gradescope entry code: 5K35EZ

1. Data Processing Inequality.

The random variables X, Y and Z form a Markov triplet (X - Y - Z) if p(z|y) = p(z|y, x), and or, equivalently, if p(x|y) = p(x|y, z). If X, Y, Z form a Markov triplet (X - Y - Z), show that:

- (a) H(X|Y) = H(X|Y,Z) and H(Z|Y) = H(Z|X,Y)
- (b) $H(X|Y) \le H(X|Z)$
- (c) $I(X;Y) \ge I(X;Z)$ and $I(Y;Z) \ge I(X;Z)$
- (d) I(X; Z|Y) = 0

where the *conditional mutual information* of random variables X and Y given Z is defined by

$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z)$$
$$= \sum_{x,y,z} p(x,y,z) \log \frac{p(x,y|z)}{p(x|z)p(y|z)}$$

2. Two looks.

Let X, Y_1 , and Y_2 be binary random variables. Assume that $I(X; Y_1) = 0$ and $I(X; Y_2) = 0$.

- (a) Does it follow that $I(X; Y_1, Y_2) = 0$? Prove or provide a counterexample.
- (b) Does it follow that $I(Y_1; Y_2) = 0$? Prove or provide a counterexample.

3. Prefix and Uniquely Decodable codes

Consider the following code:

u	Codeword			
a	1 0			
b	0 0			
с	11			
d	1 1 0			

- (a) Is this a Prefix code?
- (b) Argue that this code is uniquely decodable, by describing an algorithm for the decoding.

4. Relative entropy and the cost of miscoding. Let the random variable X be defined on $\{1, 2, 3, 4, 5, 6\}$ according to pmf p. Let p and another pmf q be

Symbol	p(x)	q(x)	$C_1(x)$	$C_2(x)$
1	1/2	1/2	0	0
2	1/8	1/4	100	10
3	1/8	1/16	101	1100
4	1/8	1/16	110	1101
5	1/16	1/16	1110	1110
6	1/16	1/16	1111	1111

(a) Calculate H(X), D(p||q) and D(q||p).

- (b) The last two columns above represent codes for the random variable. Verify that codes C_1 and C_2 are optimal under the respective distributions p and q.
- (c) Now assume that we use C_2 to code X. What is the average length of the codewords? By how much does it exceed the entropy H(X), i.e., what is the redundancy of the code?
- (d) What is the redundancy if we use code C_1 for a random variable Y with pmf q?
- 5. (Strong) LLN and AEP. Let X_1, X_2, \ldots be independent identically distributed random variables drawn according to the probability mass function $p(x), x \in \{1, 2, \ldots, m\}$. Thus $p(x_1, x_2, \ldots, x_n) = \prod_{i=1}^n p(x_i)$. We know that $-\frac{1}{n} \log p(X_1, X_2, \ldots, X_n) \to H(X)$ in probability. Let $q(x_1, x_2, \ldots, x_n) = \prod_{i=1}^n q(x_i)$, where q is another probability mass function on $\{1, 2, \ldots, m\}$.
 - (a) Evaluate $\lim_{n \to \infty} -\frac{1}{n} \log q(X_1, X_2, \dots, X_n)$, where X_1, X_2, \dots are i.i.d. $\sim p(x)$.
 - (b) Now evaluate the limit of the log likelihood ratio $\frac{1}{n} \log \frac{q(X_1, \dots, X_n)}{p(X_1, \dots, X_n)}$ when X_1, X_2, \dots are i.i.d. $\sim p(x)$. Thus the odds favoring q are exponentially small when p is true.
- 6. **AEP.** Let X_i for $i \in \{1, ..., n\}$ be an i.i.d. sequence from the p.m.f. p(x) with alphabet $\mathcal{X} = \{1, 2, ..., m\}$. Denote the expectation and entropy of X by $\mu := \mathbb{E}[X]$ and $H := -\sum p(x) \log p(x)$ respectively.

For $\epsilon > 0$, recall the definition of the typical set

$$A_{\epsilon}^{(n)} = \left\{ x^n \in \mathcal{X}^n : \left| -\frac{1}{n} \log p(x^n) - H \right| \le \epsilon \right\}$$

and define the following set

$$B_{\epsilon}^{(n)} = \left\{ x^n \in \mathcal{X}^n : \left| \frac{1}{n} \sum_{i=1}^n x_i - \mu \right| \le \epsilon \right\}.$$

In what follows, $\epsilon > 0$ is fixed.

- (a) Does $\mathbb{P}\left(X^n \in A_{\epsilon}^{(n)}\right) \to 1 \text{ as } n \to \infty$?
- (b) Does $\mathbb{P}\left(X^n \in A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}\right) \to 1 \text{ as } n \to \infty$?
- (c) Show that for all n,

$$|A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}| \le 2^{n(H+\epsilon)}.$$

(d) Show that for all n sufficiently large:

$$|A_{\epsilon}^{(n)} \cap B_{\epsilon}^{(n)}| \ge \left(\frac{1}{2}\right) 2^{n(H-\epsilon)}.$$

7. An AEP-like limit and the AEP (Bonus)

(a) Let X_1, X_2, \ldots be i.i.d. drawn according to probability mass function p(x). Find the limit in probability as $n \to \infty$ of

$$p(X_1, X_2, \ldots, X_n)^{\frac{1}{n}}.$$

(b) Let X_1, X_2, \ldots be an i.i.d. sequence of discrete random variables with entropy H(X). Let

$$C_n(t) = \{x^n \in \mathcal{X}^n : p(x^n) \ge 2^{-nt}\}$$

denote the subset of *n*-length sequences with probabilities $\geq 2^{-nt}$.

- i. Show that $|C_n(t)| \leq 2^{nt}$.
- ii. What is $\lim_{n\to\infty} P(X^n \in C_n(t))$ when t < H(X)? And when t > H(X)?