WARNING

• this class will be dense!

• will learn how to use nonlinear optimization (Levenberg-Marquardt algorithm) for pose estimation

• why ???
 • more accurate than homography method
 • can dial in lens distortion estimation, and estimation of intrinsic parameters (beyond this lecture, see lecture notes)
 • LM is very common in 3D computer vision → camera-based tracking
Pose Estimation - Overview

- goal: estimate pose via nonlinear least squares optimization

\[
\minimize \left\{ \mathbf{p} \right\} \left\| \mathbf{b} - f \left(g \left(\mathbf{p} \right) \right) \right\|^2_2
\]

- minimize reprojection error

- pose \(\mathbf{p} \) is 6-element vector with 3 Euler angles and translation of VRduino w.r.t. base station
Overview

- review: gradients, Jacobian matrix, chain rule, iterative optimization
- nonlinear optimization: Gauss-Newton, Levenberg-Marquardt
- pose estimation using LM
- pose estimation with VRduino using nonlinear optimization
Review
Review: Gradients

- gradient of a function that depends on multiple variables:

\[
\frac{\partial}{\partial x} f(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right)
\]

\[f : \mathbb{R}^n \to \mathbb{R}\]
Review: The Jacobian Matrix

- gradient of a vector-valued function that depends on multiple variables:

\[
\frac{\partial}{\partial x} f(x) = J_f = \left(\begin{array}{ccc}
\frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n}
\end{array}\right)
\]

\(f : \mathbb{R}^n \rightarrow \mathbb{R}^m, \quad J_f \in \mathbb{R}^{m \times n} \)
Review: The Chain Rule

• here’s how you’ve probably been using it so far:

\[\frac{\partial}{\partial x} f(g(x)) = \frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial x} \]

• this rule applies when \(f : \mathbb{R} \rightarrow \mathbb{R} \)

\(g : \mathbb{R} \rightarrow \mathbb{R} \)
Review: The Chain Rule

- here’s how it is applied in general:

$$\frac{\partial}{\partial x} f(g(x)) = J_f \cdot J_g = \begin{pmatrix} \frac{\partial f_1}{\partial g_1} & \ldots & \frac{\partial f_1}{\partial g_o} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial g_1} & \ldots & \frac{\partial f_m}{\partial g_o} \end{pmatrix} \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \ldots & \frac{\partial g_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_o}{\partial x_1} & \ldots & \frac{\partial g_o}{\partial x_n} \end{pmatrix}$$

$$f : \mathbb{R}^o \rightarrow \mathbb{R}^m, \quad g : \mathbb{R}^n \rightarrow \mathbb{R}^o, \quad J_f \in \mathbb{R}^{m \times o}, \quad J_g \in \mathbb{R}^{o \times n}$$
Review: Minimizing a Function

- goal: find point x^* that minimizes a nonlinear function $f(x)$
Review: What is a Gradient?

- gradient of f at some point x_0 is the slope at that point
Review: What is a Gradient?

- gradient of f at some point x_0 is the slope at that point

$$f(x)$$

$$x_0$$
Review: What is a Gradient?

- extremum is where gradient is 0! (sometimes have to check 2^{nd} derivative to see if it’s a minimum and not a maximum or saddle point)
Review: Optimization

- extremum is where gradient is 0! (sometimes have to check 2nd derivative to see if it’s a minimum and not a maximum or saddle point)

- convex optimization: there is only a single \textit{global} minimum

- non-convex optimization: multiple \textit{local} minima
Review: Optimization

- how to find where gradient is 0?
Review: Optimization

- how to find where gradient is 0?

1. start with some initial guess x_0, e.g. a random value
Review: Optimization

- how to find where gradient is 0?

1. start with some initial guess \(x_0 \), e.g. a random value
2. update guess by linearizing function and minimizing that
Review: Optimization

- how to linearize a function? → using Taylor expansion!

\[f(x_0 + \Delta x) \approx f(x_0) + J_f \Delta x + \varepsilon \]
Review: Optimization

• find minimum of linear function approximation

\[f(x_0 + \Delta x) \approx f(x_0) + J_f \Delta x + \varepsilon \]

minimize \(\Delta x \)

\[\left\| b - f(x_0 + \Delta x) \right\|_2^2 \]

\[\approx \left\| b - \left(f(x_0) + J_f \Delta x \right) \right\|_2^2 \]
Review: Optimization

- find minimum of linear function approximation (gradient=0)

\[
f(x_0 + \Delta x) \approx f(x_0) + J_f \Delta x + \varepsilon
\]

minimize \[\| b - f(x_0 + \Delta x) \|_2^2 \]

\[\approx \| b - (f(x_0) + J_f \Delta x) \|_2^2 \]

equate gradient to zero:

\[
0 = J_f^T J_f \Delta x - J_f^T (b - f(x))
\]

\[\Delta x = (J_f^T J_f)^{-1} J_f^T (b - f(x)) \]

normal equations
Review: Optimization

- take step and repeat procedure

\[\Delta x = \left(J_f^T J_f \right)^{-1} J_f^T (b - f(x)) \]
Review: Optimization

- take step and repeat procedure, will get there eventually

\[\Delta x = (J_f^T J_f)^{-1} J_f^T (b - f(x)) \]
Review: Optimization – Gauss-Newton

• results in an iterative algorithm

\[f(x) \]

\[x_{k+1} = x_k + \Delta x \]

\[\Delta x = \left(J_f^T J_f \right)^{-1} J_f^T (b - f(x)) \]
Review: Optimization – Gauss-Newton

• results in an iterative algorithm

1. \(x = \text{rand()} \) // initialize \(x_0 \)
2. for \(k=1 \) to \(\text{max_iter} \)
3. \(f = \text{eval_objective}(x) \)
4. \(J = \text{eval_jacobian}(x) \)
5. \(x = x + \text{inv}(J' \cdot J) \cdot J' \cdot (b - f) \) // update \(x \)

\[
\Delta x = \left(J_f^T J_f \right)^{-1} J_f^T (b - f(x))
\]
Review: Optimization – Gauss-Newton

- matrix J^TJ can be ill-conditioned (i.e. not invertible)

$$\Delta x = \left(J_f^T J_f \right)^{-1} J_f^T (b - f(x))$$
Review: Optimization – Levenberg

- matrix J^TJ can be ill-conditioned (i.e. not invertible)
- add a diagonal matrix to make invertible – acts as damping

\[\Delta x = \left(J_f^T J_f + \lambda I \right)^{-1} J_f^T \left(b - f(x) \right) \]
Review: Optimization – Levenberg-Marquardt

- matrix J^TJ can be ill-conditioned (i.e. not invertible)
- better: use J^TJ instead of I as damping. This is LM!

$$
\Delta x = \left(J_f^T J_f + \lambda \text{diag}(J_f^T J_f) \right)^{-1} J_f^T (b - f(x))
$$
Review: Optimization – Levenberg-Marquardt

- matrix J^TJ can be ill-conditioned (i.e. not invertible)
- better: use J^TJ instead of I as damping. This is LM!

\[f(x) \]

1. $x = \text{rand()}$ // initialize x_0
2. for $k=1$ to max_iter
3. \[f = \text{eval_objective}(x) \]
4. \[J = \text{eval_jacobian}(x) \]
5. \[x = x + \text{inv}(J'^TJ + \lambda \text{diag}(J'^TJ)) \cdot J'^T(b - f) \]

\[\Delta x = (J_f^TJ_f + \lambda \text{diag}(J_f^TJ_f))^{-1} J_f^T(b - f(x)) \]
Pose Estimation via Levenberg-Marquardt
Pose Estimation - Overview

- goal: estimate pose via nonlinear least squares optimization
 \[
 \text{minimize} \left\| b - f\left(g\left(p \right) \right) \right\|_2^2
 \]

- minimize reprojection error

- pose \(p \) is 6-element vector with 3 Euler angles and translation of VRduino w.r.t. base station

\[
\begin{bmatrix}
\theta_x \\
\theta_y \\
\theta_z \\
t_x \\
t_y \\
t_z \\
\end{bmatrix}
\]

\[
b = \begin{bmatrix}
x_1^n \\
y_1^n \\
\vdots \\
x_4^n \\
y_4^n \\
\end{bmatrix}
\]

image formation
Pose Estimation - Objective Function

- goal: estimate pose via nonlinear least squares optimization

\[
\min_{\{p\}} \left\| \mathbf{b} - f(g(p)) \right\|^2_2
\]

- objective function is sum of squares of reprojection error

\[
\left\| \mathbf{b} - f(g(p)) \right\|^2_2 = (x_1^n - f_1(g(p)))^2 + (y_1^n - f_2(g(p)))^2 + \ldots + (x_4^n - f_7(g(p)))^2 + (y_4^n - f_8(g(p)))^2
\]
Image Formation

1. transform 3D point into view space:

\[
\begin{pmatrix}
 x_i^c \\
 y_i^c \\
 z_i^c
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & -1
\end{pmatrix} \times
\begin{pmatrix}
 r_{11} & r_{12} & t_x \\
 r_{21} & r_{22} & t_y \\
 r_{31} & r_{32} & t_z
\end{pmatrix} \times
\begin{pmatrix}
 x_i \\
 y_i \\
 1
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 h_1 & h_2 & h_3 \\
 h_4 & h_5 & h_6 \\
 h_7 & h_8 & h_9
\end{pmatrix} \times
\begin{pmatrix}
 x_i \\
 y_i \\
 1
\end{pmatrix}
\]

2. perspective divide:

\[
\begin{pmatrix}
 x_i^n \\
 y_i^n
\end{pmatrix} =
\begin{pmatrix}
 x_i^c \\
 y_i^c \\
 z_i^c
\end{pmatrix}
\]
Image Formation: $g(p)$ and $f(h)$

- split up image formation into two functions

\[f(h) = f(g(p)) \]

\[g: \mathbb{R}^6 \rightarrow \mathbb{R}^9, \quad f: \mathbb{R}^9 \rightarrow \mathbb{R}^8 \]
Image Formation: $f(h)$

- $f(h)$ uses elements of homography matrix h to compute projected 2D coordinates as

$$f(h) = \begin{pmatrix} f_1(h) \\ f_2(h) \\ \vdots \\ f_7(h) \\ f_8(h) \end{pmatrix} = \begin{pmatrix} x_1^n \\ y_1^n \\ \vdots \\ x_4^n \\ y_4^n \end{pmatrix} = \begin{pmatrix} h_1x_1 + h_2y_1 + h_3 \\ h_7x_1 + h_8y_1 + h_9 \\ h_4x_1 + h_5y_1 + h_6 \\ h_7x_4 + h_8y_4 + h_9 \\ h_4x_4 + h_5y_4 + h_6 \end{pmatrix}$$
Jacobian Matrix of $f(h)$

$$f_1(h) = \frac{h_1 x_1 + h_2 y_1 + h_3}{h_7 x_1 + h_8 y_1 + h_9}$$

- first row of Jacobian matrix

$$\begin{align*}
\frac{\partial f_1}{\partial h_1} &= \frac{x_1}{h_7 x_1 + h_8 y_1 + h_9} \\
\frac{\partial f_1}{\partial h_2} &= \frac{y_1}{h_7 x_1 + h_8 y_1 + h_9} \\
\frac{\partial f_1}{\partial h_3} &= \frac{1}{h_7 x_1 + h_8 y_1 + h_9} \\
\frac{\partial f_1}{\partial h_4} &= 0, \quad \frac{\partial f_1}{\partial h_5} = 0, \quad \frac{\partial f_1}{\partial h_6} = 0
\end{align*}$$

\[
J_f = \begin{pmatrix}
\frac{\partial f_1}{\partial h_1} & \ldots & \frac{\partial f_1}{\partial h_9} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_8}{\partial h_1} & \ldots & \frac{\partial f_8}{\partial h_9}
\end{pmatrix}
\]
Jacobian Matrix of $f(h)$

- the remaining rows of the Jacobian can be derived with a similar pattern

- see course notes for a detailed derivation of the elements of this Jacobian matrix

$$J_f = \begin{pmatrix}
\frac{\partial f_1}{\partial h_1} & \ldots & \frac{\partial f_1}{\partial h_9} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_8}{\partial h_1} & \ldots & \frac{\partial f_8}{\partial h_9}
\end{pmatrix}$$
Image Formation: $g(p)$

- $g(p)$ uses 6 pose parameters to compute elements of homography matrix h as

$$g(p) = \begin{bmatrix} g_1(p) \\ \vdots \\ g_9(p) \end{bmatrix} = \begin{bmatrix} h_1 \\ \vdots \\ h_9 \end{bmatrix}$$

Definition of homography matrix:

$$\begin{pmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ r_{31} & r_{32} & t_z \end{pmatrix}$$

Rotation matrix from Euler angles:

$$R = R_z(\theta_z) \cdot R_x(\theta_x) \cdot R_y(\theta_y)$$

$$\begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} = \begin{pmatrix} \cos(\theta_z) & -\sin(\theta_z) & 0 \\ \sin(\theta_z) & \cos(\theta_z) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_x) & -\sin(\theta_x) \\ 0 & \sin(\theta_x) & \cos(\theta_x) \end{pmatrix} \begin{pmatrix} \cos(\theta_y) & 0 & \sin(\theta_y) \\ 0 & 1 & 0 \\ -\sin(\theta_y) & 0 & \cos(\theta_y) \end{pmatrix}$$
Image Formation: $g(p)$

- write as

\[
\begin{align*}
 h_1 &= g_1(p) = \cos(\theta_y)\cos(\theta_z) - \sin(\theta_x)\sin(\theta_y)\sin(\theta_z) \\
 h_2 &= g_2(p) = -\cos(\theta_x)\sin(\theta_z) \\
 h_3 &= g_3(p) = t_x \\
 h_4 &= g_4(p) = \cos(\theta_y)\sin(\theta_z) + \sin(\theta_x)\sin(\theta_y)\cos(\theta_z) \\
 h_5 &= g_5(p) = \cos(\theta_x)\cos(\theta_z) \\
 h_6 &= g_6(p) = t_y \\
 h_7 &= g_7(p) = \cos(\theta_x)\sin(\theta_y) \\
 h_8 &= g_8(p) = -\sin(\theta_x) \\
 h_9 &= g_9(p) = -t_z
\end{align*}
\]
Jacobian Matrix of $g(p)$

$$p = (p_1, p_2, p_3, p_4, p_5, p_6) = \left(\theta_x, \theta_y, \theta_z, t_x, t_y, t_z \right)$$

$$h_1 = g_1(p) = \cos(\theta_y)\cos(\theta_z) - \sin(\theta_x)\sin(\theta_y)\sin(\theta_z)$$

$$h_2 = g_2(p) = -\cos(\theta_x)\sin(\theta_z)$$

$$h_3 = g_3(p) = t_x$$

$$h_4 = g_4(p) = \cos(\theta_y)\sin(\theta_z) + \sin(\theta_x)\sin(\theta_y)\cos(\theta_z)$$

$$h_5 = g_5(p) = \cos(\theta_x)\cos(\theta_z)$$

$$h_6 = g_6(p) = t_y$$

$$h_7 = g_7(p) = \cos(\theta_x)\sin(\theta_y)$$

$$h_8 = g_8(p) = -\sin(\theta_x)$$

$$h_9 = g_9(p) = -t_z$$

$$J_g = \begin{pmatrix}
\frac{\partial g_1}{\partial p_1} & \ldots & \frac{\partial g_1}{\partial p_6} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_9}{\partial p_1} & \ldots & \frac{\partial g_9}{\partial p_6}
\end{pmatrix}$$
Jacobian Matrix of $g(p)$

$p = (p_1, p_2, p_3, p_4, p_5, p_6) = (\theta_x, \theta_y, \theta_z, t_x, t_y, t_z)$

$$h_1 = g_1(p) = \cos(\theta_y)\cos(\theta_z) - \sin(\theta_x)\sin(\theta_y)\sin(\theta_z)$$

- first row of Jacobian matrix:

$$\frac{\partial g_1}{\partial p_1} = -\cos(\theta_x)\sin(\theta_y)\sin(\theta_z)$$

$$\frac{\partial g_1}{\partial p_2} = -\sin(\theta_y)\cos(\theta_z) - \sin(\theta_x)\cos(\theta_y)\sin(\theta_z)$$

$$\frac{\partial g_1}{\partial p_3} = -\cos(\theta_y)\sin(\theta_z) - \sin(\theta_x)\sin(\theta_y)\cos(\theta_z)$$

$$\frac{\partial g_1}{\partial p_4} = 0, \quad \frac{\partial g_1}{\partial p_5} = 0, \quad \frac{\partial g_1}{\partial p_6} = 0$$
Jacobian Matrix of $g(p)$

$$J_g = \begin{pmatrix}
\frac{\partial g_1}{\partial p_1} & \ldots & \frac{\partial g_1}{\partial p_6} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_9}{\partial p_1} & \ldots & \frac{\partial g_9}{\partial p_6}
\end{pmatrix}$$

- the remaining rows of the Jacobian can be derived with a similar pattern

- see course notes for a detailed derivation of the elements of this Jacobian matrix
Jacobian Matrices of f and g

- to get the Jacobian of $f(g(p))$, compute the two Jacobian matrices and multiply them

$$J = J_f \cdot J_g = \begin{pmatrix}
\frac{\partial f_1}{\partial h_1} & \ldots & \frac{\partial f_1}{\partial h_9} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_8}{\partial h_1} & \ldots & \frac{\partial f_8}{\partial h_9}
\end{pmatrix} \cdot \begin{pmatrix}
\frac{\partial g_1}{\partial p_1} & \ldots & \frac{\partial g_1}{\partial p_6} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_9}{\partial p_1} & \ldots & \frac{\partial g_9}{\partial p_6}
\end{pmatrix}$$
Pose Tracking with LM

- LM then iteratively updates pose as

\[
p^{(k+1)} = p^{(k)} + \left(J^T J + \lambda \text{diag}(J^T J) \right)^{-1} J^T \left(b - f\left(p^{(k)}\right) \right)
\]

- pseudo-code

1. \(p = \ldots\) // initialize \(p_0\)
2. for \(k=1\) to \(\text{max_iter}\)
3. \(f = \text{eval_objective}(p)\)
4. \(J = \text{get_jacobian}(p)\)
5. \(p = p + \text{inv}(J'J + \lambda \text{diag}(J'J))J'(b-f)\)
1. value = function eval_objective(p)
2. for i=1:4
3. value(2*(i-1)) = ... \[h_1 x_i + h_2 y_i + h_3 \]
4. value(2*(i-1)+1) = ... \[h_7 x_i + h_8 y_i + h_9 \]
1. \(J = \text{function get_jacobian}(p) \)
2. \(J_f = \text{get_jacobian}_f(p) \)
3. \(J_g = \text{get_jacobian}_g(p) \)
4. \(J = J_f \times J_g \)

\[
J_f = \begin{pmatrix}
\frac{\partial f_1}{\partial h_1} & \cdots & \frac{\partial f_1}{\partial h_9} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_8}{\partial h_1} & \cdots & \frac{\partial f_8}{\partial h_9}
\end{pmatrix}
\]

\[
J_g = \begin{pmatrix}
\frac{\partial g_1}{\partial p_1} & \cdots & \frac{\partial g_1}{\partial p_6} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_9}{\partial p_1} & \cdots & \frac{\partial g_9}{\partial p_6}
\end{pmatrix}
\]
Pose Tracking with LM on VRduino

• some more hints for implementation:

 • let Arduino Matrix library compute matrix-matrix multiplications and also matrix inverses for you!

 • run homography method and use that to initialize p for LM

 • use something like 5-25 iterations of LM per frame for real-time performance

 • user-defined parameter λ

 • good luck!
Pose Tracking with LM on VRduino

live demo
Outlook: Camera Calibration

- camera calibration is one of the most fundamental problems in computer vision and imaging

- task: estimate intrinsic (lens distortion, focal length, principle point) & extrinsic (translation, rotation) camera parameters given images of planar checkerboards

- uses similar procedure as discussed today

http://www.vision.caltech.edu/bouguetj/calib_doc/
Outlook: Sensor Fusion with Extended Kalman Filter

- also desirable: estimate bias of each of all IMU sensors
- also desirable: joint pose estimation from all IMU + photodiode measurements

- can do all of that with an Extended Kalman Filter - slightly too advanced for this class, but you can find a lot of literature in the robotic vision community
Outlook: Sensor Fusion with Extended Kalman Filter

- Extended Kalman filter: can be interpreted as a Bayesian framework for sensor fusion
- Hidden Markov Model (HMM)
Must read: course notes on tracking!