Pose Tracking II

Gordon Wetzstein
Stanford University
EE 267 Virtual Reality
Lecture 12
stanford.edu/class/ee267/
WARNING

- this class will be dense!

- will learn how to use nonlinear optimization (Levenberg-Marquardt algorithm) for pose estimation

- why ???
 - more accurate than homography method
 - can dial in lens distortion estimation, and estimation of intrinsic parameters (beyond this lecture, see lecture notes)
 - LM is very common in 3D computer vision → camera-based tracking
Pose Estimation - Overview

- goal: estimate pose via nonlinear least squares optimization

\[
\text{minimize} \left\| b - f(g(p)) \right\|^2_2
\]

- minimize reprojection error

- pose \(p \) is 6-element vector with 3 Euler angles and translation of VRduino w.r.t. base station
Overview

- review: gradients, Jacobian matrix, chain rule, iterative optimization
- nonlinear optimization: Gauss-Newton, Levenberg-Marquardt
- pose estimation using LM
- pose estimation with VRduino using nonlinear optimization
Review
Review: Gradients

- gradient of a function that depends on multiple variables:

\[
\frac{\partial}{\partial x} f(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right)
\]

\[f : \mathbb{R}^n \rightarrow \mathbb{R}\]
Review: The Jacobian Matrix

- gradient of a vector-valued function that depends on multiple variables:

\[
\frac{\partial}{\partial x} f(x) = J_f = \begin{pmatrix}
\frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n}
\end{pmatrix}
\]

\[f : \mathbb{R}^n \rightarrow \mathbb{R}^m, \quad J_f \in \mathbb{R}^{m \times n}\]
Review: The Chain Rule

• here’s how you’ve probably been using it so far:

\[
\frac{\partial}{\partial x} f(g(x)) = \frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial x}
\]

• this rule applies when \(f : \mathbb{R} \to \mathbb{R} \)

\(g : \mathbb{R} \to \mathbb{R} \)
Review: The Chain Rule

- Here’s how it is applied in general:

\[
\frac{\partial}{\partial x} f(g(x)) = J_f \cdot J_g = \begin{pmatrix}
\frac{\partial f_1}{\partial g_1} & \cdots & \frac{\partial f_1}{\partial g_o} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial g_1} & \cdots & \frac{\partial f_m}{\partial g_o}
\end{pmatrix}
\begin{pmatrix}
\frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_o}{\partial x_1} & \cdots & \frac{\partial g_o}{\partial x_n}
\end{pmatrix}
\]

\(f : \mathbb{R}^o \to \mathbb{R}^m, \quad g : \mathbb{R}^n \to \mathbb{R}^o, \quad J_f \in \mathbb{R}^{m \times o}, \quad J_g \in \mathbb{R}^{o \times n}\)
Review: Minimizing a Function

- goal: find point x^* that minimizes a nonlinear function $f(x)$
Review: What is a Gradient?

- gradient of f at some point x_0 is the slope at that point
Review: What is a Gradient?

- gradient of f at some point x_0 is the slope at that point
Review: What is a Gradient?

- extremum is where gradient is 0! (sometimes have to check 2nd derivative to see if it’s a minimum and not a maximum or saddle point)
Review: Optimization

- extremum is where gradient is 0! (sometimes have to check 2nd derivative to see if it’s a minimum and not a maximum or saddle point)

\[
\begin{align*}
\text{convex} & \quad f(x) \\
\text{non-convex} & \quad f(x)
\end{align*}
\]

- convex optimization: there is only a single *global* minimum
- non-convex optimization: multiple *local* minima
Review: Optimization

- how to find where gradient is 0?
Review: Optimization

- how to find where gradient is 0?

1. start with some initial guess x_0, e.g. a random value
Review: Optimization

• how to find where gradient is 0?

1. start with some initial guess x_0, e.g. a random value
2. update guess by linearizing function and minimizing that
Review: Optimization

- how to linearize a function? → using Taylor expansion!

\[f(x) \approx f(x_0) + J_f \Delta x + \varepsilon \]
Review: Optimization

- find minimum of linear function approximation

\[f(x_0 + \Delta x) \approx f(x_0) + J_f \Delta x + \epsilon \]

minimize \[\Delta x \]

\[||b - f(x_0 + \Delta x)||_2^2 \]

\[\approx ||b - (f(x_0) + J_f \Delta x)||_2^2 \]
Review: Optimization

- find minimum of linear function approximation (gradient=0)

\[f(x_0 + \Delta x) \approx f(x_0) + J_f \Delta x + \varepsilon \]

minimize
\[\min_{\Delta x} \left\| b - f(x_0 + \Delta x) \right\|_2^2 \]
\[\approx \left\| b - (f(x_0) + J_f \Delta x) \right\|_2^2 \]

equate gradient to zero:
\[0 = J_f^T J_f \Delta x - J_f^T (b - f(x)) \]
\[\Delta x = \left(J_f^T J_f \right)^{-1} J_f^T (b - f(x)) \]

normal equations
Review: Optimization

- take step and repeat procedure

\[\Delta x = \left(J_f^T J_f \right)^{-1} J_f^T (b - f(x)) \]
Review: Optimization

- take step and repeat procedure, will get there eventually

\[\Delta x = \left(J_f^T J_f \right)^{-1} J_f^T (b - f(x)) \]
Review: Optimization – Gauss-Newton

- results in an iterative algorithm

\[x_{k+1} = x_k + \Delta x \]

\[\Delta x = \left(J_f^T J_f \right)^{-1} J_f^T (b - f(x)) \]
Review: Optimization – Gauss-Newton

- results in an iterative algorithm

1. \(x = \text{rand()} // \text{initialize } x_0 \)
2. for \(k=1 \) to \(\text{max_iter} \)
3. \(f = \text{eval_objective}(x) \)
4. \(J = \text{eval_jacobian}(x) \)
5. \(x = x + \text{inv}(J' \cdot J) \cdot J' \cdot (b - f) // \text{update } x \)

\[\Delta x = \left(J_f^T J_f \right)^{-1} J_f^T (b - f(x)) \]
Review: Optimization – Gauss-Newton

- matrix J^TJ can be ill-conditioned (i.e. not invertible)

$$\Delta x = \left(J_f^T J_f \right)^{-1} J_f^T (b - f(x))$$
Review: Optimization – Levenberg

- matrix $J^T J$ can be ill-conditioned (i.e. not invertible)
- add a diagonal matrix to make invertible – acts as damping

$$
\Delta x = \left(J_f^T J_f + \lambda I \right)^{-1} J_f^T (b - f(x))
$$
Review: Optimization – Levenberg-Marquardt

- matrix $J^T J$ can be ill-conditioned (i.e. not invertible)
- better: use $J^T J$ instead of I as damping. This is LM!

$$\Delta x = \left(J_f^T J_f + \lambda \text{diag}(J_f^T J_f)\right)^{-1} J_f^T (b - f(x))$$
Review: Optimization – Levenberg-Marquardt

- matrix J^TJ can be ill-conditioned (i.e. not invertible)
- better: use J^TJ instead of I as damping. This is LM!

1. $x = \text{rand()}$ // initialize x_0
2. for $k=1$ to max_iter
3. $f = \text{eval_objective}(x)$
4. $J = \text{eval_jacobian}(x)$
5. $x = x + \text{inv}(J^TJ + \lambda \text{diag}(J^TJ)) \cdot J^T(b - f)$

$$
\Delta x = \left(J_f^T J_f + \lambda \text{diag}(J_f^T J_f) \right)^{-1} J_f^T (b - f(x))
$$
Pose Estimation via Levenberg-Marquardt
Pose Estimation - Overview

- Goal: estimate pose via nonlinear least squares optimization

\[
\text{minimize} \left\| b - f(g(p)) \right\|^2_2
\]

- Minimize reprojection error
- Pose \(p \) is 6-element vector with 3 Euler angles and translation of VRduino w.r.t. base station
Pose Estimation - Objective Function

- goal: estimate pose via nonlinear least squares optimization

\[
\text{minimize} \left\| b - f\left(g\left(p\right)\right) \right\|_2^2
\]

\[
\begin{aligned}
&\text{image formation} \\
&\text{objective function is sum of squares of reprojection error}
\end{aligned}
\]

\[
\left\| b - f\left(g\left(p\right)\right) \right\|_2^2 = \left(x_1^n - f_1\left(g\left(p\right)\right)\right)^2 + \left(y_1^n - f_2\left(g\left(p\right)\right)\right)^2 + \ldots + \left(x_4^n - f_7\left(g\left(p\right)\right)\right)^2 + \left(y_4^n - f_8\left(g\left(p\right)\right)\right)^2
\]
Image Formation

1. transform 3D point into view space:

\[
\begin{pmatrix}
x_i^c \\
y_i^c \\
w_i^c
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix} \begin{pmatrix}
r_{11} & r_{12} & t_x \\
r_{21} & r_{22} & t_y \\
r_{31} & r_{32} & t_z
\end{pmatrix} \begin{pmatrix}
x_i \\
y_i \\
1
\end{pmatrix} = \begin{pmatrix}
h_1 & h_2 & h_3 \\
h_4 & h_5 & h_6 \\
h_7 & h_8 & h_9
\end{pmatrix} \begin{pmatrix}
x_i \\
y_i \\
1
\end{pmatrix}
\]

2. perspective divide:

\[
\begin{pmatrix}
x_i^n \\
y_i^n
\end{pmatrix} = \begin{pmatrix}
\frac{x_i^c}{w_i^c} \\
\frac{y_i^c}{w_i^c}
\end{pmatrix}
\]
Image Formation: $g(p)$ and $f(h)$

- split up image formation into two functions

\[
f(h) = f(g(p))
\]

$g : \mathbb{R}^6 \rightarrow \mathbb{R}^9, \quad f : \mathbb{R}^9 \rightarrow \mathbb{R}^8$
Image Formation: $f(h)$

- $f(h)$ uses elements of homography matrix h to compute projected 2D coordinates as

\[
f(h) = \begin{pmatrix} f_1(h) \\ f_2(h) \\ \vdots \\ f_7(h) \\ f_8(h) \end{pmatrix} \begin{pmatrix} x_1^n \\ y_1^n \\ x_4^n \\ y_4^n \end{pmatrix} = \begin{pmatrix} h_1x_1 + h_2y_1 + h_3 \\ h_7x_1 + h_8y_1 + h_9 \\ h_4x_1 + h_5y_1 + h_6 \\ h_7x_4 + h_8y_4 + h_9 \\ h_4x_4 + h_5y_4 + h_6 \\ h_7x_4 + h_8y_4 + h_9 \end{pmatrix}
\]
Jacobian Matrix of $f(h)$

$$f_1(h) = \frac{h_1 x_1 + h_2 y_1 + h_3}{h_7 x_1 + h_8 y_1 + h_9}$$

- first row of Jacobian matrix

$$\begin{align*}
\frac{\partial f_1}{\partial h_1} &= \frac{x_1}{h_7 x_1 + h_8 y_1 + h_9} \\
\frac{\partial f_1}{\partial h_2} &= \frac{y_1}{h_7 x_1 + h_8 y_1 + h_9} \\
\frac{\partial f_1}{\partial h_3} &= \frac{1}{h_7 x_1 + h_8 y_1 + h_9} \\
\frac{\partial f_1}{\partial h_4} &= 0, \quad \frac{\partial f_1}{\partial h_5} = 0, \quad \frac{\partial f_1}{\partial h_6} = 0 \\
\frac{\partial f_1}{\partial h_7} &= -\left(\frac{h_1 x_1 + h_2 y_1 + h_3}{(h_7 x_1 + h_8 y_1 + h_9)^2}\right) x_1 \\
\frac{\partial f_1}{\partial h_8} &= -\left(\frac{h_1 x_1 + h_2 y_1 + h_3}{(h_7 x_1 + h_8 y_1 + h_9)^2}\right) y_1 \\
\frac{\partial f_1}{\partial h_9} &= -\left(\frac{h_1 x_1 + h_2 y_1 + h_3}{(h_7 x_1 + h_8 y_1 + h_9)^2}\right)
\end{align*}$$
Jacobian Matrix of $f(h)$

$J_f = \begin{pmatrix} \frac{\partial f_1}{\partial h_1} & \cdots & \frac{\partial f_1}{\partial h_9} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_8}{\partial h_1} & \cdots & \frac{\partial f_8}{\partial h_9} \end{pmatrix}$

- the remaining rows of the Jacobian can be derived with a similar pattern

- see course notes for a detailed derivation of the elements of this Jacobian matrix
Image Formation: \(g(p) \)

- \(g(p) \) uses 6 pose parameters to compute elements of homography matrix \(h \) as

\[
g(p) = \begin{pmatrix}
g_1(p) \\
g_2(p) \\
\vdots \\
g_9(p)
\end{pmatrix} = \begin{pmatrix} h_1 \\
h_2 \\
\vdots \\
h_9
\end{pmatrix}
\]

Definition of homography matrix:

\[
\begin{pmatrix}
h_1 & h_2 & h_3 \\
h_4 & h_5 & h_6 \\
h_7 & h_8 & h_9
\end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix} \cdot \begin{pmatrix} r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{pmatrix}
\]

Rotation matrix from Euler angles:

\[
R = R_z(\theta_z) \cdot R_x(\theta_x) \cdot R_y(\theta_y)
\]

\[
\begin{pmatrix}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{pmatrix} = \begin{pmatrix} \cos(\theta_z) & -\sin(\theta_z) & 0 \\
\sin(\theta_z) & \cos(\theta_z) & 0 \\
0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\
0 & \cos(\theta_x) & -\sin(\theta_x) \\
0 & \sin(\theta_x) & \cos(\theta_x)
\end{pmatrix} \cdot \begin{pmatrix} \cos(\theta_y) & 0 & \sin(\theta_y) \\
0 & 1 & 0 \\
-\sin(\theta_y) & 0 & \cos(\theta_y)
\end{pmatrix}
\]
Image Formation: $g(p)$

- write as

\[
\begin{align*}
h_1 &= g_1(p) &= \cos(\theta_y)\cos(\theta_z) - \sin(\theta_x)\sin(\theta_y)\sin(\theta_z) \\
h_2 &= g_2(p) &= -\cos(\theta_x)\sin(\theta_z) \\
h_3 &= g_3(p) &= t_x \\
h_4 &= g_4(p) &= \cos(\theta_y)\sin(\theta_z) + \sin(\theta_x)\sin(\theta_y)\cos(\theta_z) \\
h_5 &= g_5(p) &= \cos(\theta_x)\cos(\theta_z) \\
h_6 &= g_6(p) &= t_y \\
h_7 &= g_7(p) &= \cos(\theta_x)\sin(\theta_y) \\
h_8 &= g_8(p) &= -\sin(\theta_x) \\
h_9 &= g_9(p) &= -t_z
\end{align*}
\]
Jacobian Matrix of $g(p)$

\[p = (p_1, p_2, p_3, p_4, p_5, p_6) = \left(\theta_x, \theta_y, \theta_z, t_x, t_y, t_z \right) \]

\[
\begin{align*}
 h_1 &= g_1(p) = \cos(\theta_y)\cos(\theta_z) - \sin(\theta_x)\sin(\theta_y)\sin(\theta_z) \\
 h_2 &= g_2(p) = -\cos(\theta_x)\sin(\theta_z) \\
 h_3 &= g_3(p) = t_x \\
 h_4 &= g_4(p) = \cos(\theta_y)\sin(\theta_z) + \sin(\theta_x)\sin(\theta_y)\cos(\theta_z) \\
 h_5 &= g_5(p) = \cos(\theta_x)\cos(\theta_z) \\
 h_6 &= g_6(p) = t_y \\
 h_7 &= g_7(p) = \cos(\theta_x)\sin(\theta_y) \\
 h_8 &= g_8(p) = -\sin(\theta_x) \\
 h_9 &= g_9(p) = -t_z
\end{align*}
\]

\[
J_g = \begin{bmatrix}
 \frac{\partial g_1}{\partial p_1} & \cdots & \frac{\partial g_1}{\partial p_6} \\
 \vdots & \ddots & \vdots \\
 \frac{\partial g_9}{\partial p_1} & \cdots & \frac{\partial g_9}{\partial p_6}
\end{bmatrix}
\]
Jacobian Matrix of $g(p)$

$$p = (p_1, p_2, p_3, p_4, p_5, p_6) = \left(\theta_x, \theta_y, \theta_z, t_x, t_y, t_z \right)$$

$$h_1 = g_1(p) = \cos(\theta_y)\cos(\theta_z) - \sin(\theta_x)\sin(\theta_y)\sin(\theta_z)$$

\[
J_g = \begin{bmatrix}
\frac{\partial g_1}{\partial p_1} & \cdots & \frac{\partial g_1}{\partial p_6} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_9}{\partial p_1} & \cdots & \frac{\partial g_9}{\partial p_6}
\end{bmatrix}
\]

- first row of Jacobian matrix

\[
\frac{\partial g_1}{\partial p_1} = -\cos(\theta_x)\sin(\theta_y)\sin(\theta_z)
\]

\[
\frac{\partial g_1}{\partial p_2} = -\sin(\theta_y)\cos(\theta_z) - \sin(\theta_x)\cos(\theta_y)\sin(\theta_z)
\]

\[
\frac{\partial g_1}{\partial p_3} = -\cos(\theta_y)\sin(\theta_z) - \sin(\theta_x)\sin(\theta_y)\cos(\theta_z)
\]

\[
\frac{\partial g_1}{\partial p_4} = 0, \quad \frac{\partial g_1}{\partial p_5} = 0, \quad \frac{\partial g_1}{\partial p_6} = 0
\]
Jacobian Matrix of $g(p)$

\[
J_g = \begin{bmatrix}
\frac{\partial g_1}{\partial p_1} & \cdots & \frac{\partial g_1}{\partial p_6} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_9}{\partial p_1} & \cdots & \frac{\partial g_9}{\partial p_6}
\end{bmatrix}
\]

- the remaining rows of the Jacobian can be derived with a similar pattern
- see *course notes* for a detailed derivation of the elements of this Jacobian matrix
Jacobian Matrices of f and g

- to get the Jacobian of $f(g(p))$, compute the two Jacobian matrices and multiply them

$$J = J_f \cdot J_g = \begin{pmatrix}
\frac{\partial f_1}{\partial h_1} & \ldots & \frac{\partial f_1}{\partial h_9} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_8}{\partial h_1} & \ldots & \frac{\partial f_8}{\partial h_9}
\end{pmatrix} \cdot \begin{pmatrix}
\frac{\partial g_1}{\partial p_1} & \ldots & \frac{\partial g_1}{\partial p_6} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_9}{\partial p_1} & \ldots & \frac{\partial g_9}{\partial p_6}
\end{pmatrix}$$
Pose Tracking with LM

- LM then iteratively updates pose as

\[p^{(k+1)} = p^{(k)} + \left(J^T J + \lambda \text{diag}(J^T J) \right)^{-1} J^T \left(b - f \left(g \left(p^{(k)} \right) \right) \right) \]

- pseudo-code

1. \(p = \ldots \) // initialize \(p_0 \)
2. for \(k=1 \) to \(\text{max}_\text{iter} \)
3. \(f = \text{eval_objective}(p) \)
4. \(J = \text{get_jacobian}(p) \)
5. \(p = p + \text{inv}(J'J + \lambda \text{diag}(J'J)) * J' \cdot (b-f) \)
1. value = function eval_objective(p)
2. for i=1:4
3. value(2*(i-1)) = ...
4. value(2*(i-1)+1) = ...

\[
\begin{align*}
&h_1 x_i + h_2 y_i + h_3 \\
&h_7 x_i + h_8 y_i + h_9 \\
&h_4 x_i + h_5 y_i + h_6 \\
&h_7 x_i + h_8 y_i + h_9
\end{align*}
\]
Pose Tracking with LM

1. \(J = \text{function get_jacobian}(p) \)
2. \(J_f = \text{get_jacobian_f}(g(p)) \)
3. \(J_g = \text{get_jacobian_g}(p) \)
4. \(J = J_f \times J_g \)

\[
J_f = \begin{pmatrix}
\frac{\partial f_1}{\partial h_1} & \cdots & \frac{\partial f_1}{\partial h_9} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_8}{\partial h_1} & \cdots & \frac{\partial f_8}{\partial h_9}
\end{pmatrix}
\]

\[
J_g = \begin{pmatrix}
\frac{\partial g_1}{\partial p_1} & \cdots & \frac{\partial g_1}{\partial p_6} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_9}{\partial p_1} & \cdots & \frac{\partial g_9}{\partial p_6}
\end{pmatrix}
\]
Pose Tracking with LM on VRduino

- some more hints for implementation:
 - let Arduino Matrix library compute matrix-matrix multiplications and also matrix inverses for you!
 - run homography method and use that to initialize p for LM
 - use something like 5-25 iterations of LM per frame for real-time performance
 - user-defined parameter λ
 - good luck!
Outlook: Camera Calibration

- camera calibration is one of the most fundamental problems in computer vision and imaging

- task: estimate intrinsic (lens distortion, focal length, principle point) & extrinsic (translation, rotation) camera parameters given images of planar checkerboards

- uses similar procedure as discussed today

http://www.vision.caltech.edu/bouguetj/calib_doc/
Outlook: Sensor Fusion with Extended Kalman Filter

- also desirable: estimate bias of each of all IMU sensors
- also desirable: joint pose estimation from all IMU + photodiode measurements
- can do all of that with an Extended Kalman Filter - slightly too advanced for this class, but you can find a lot of literature in the robotic vision community
Outlook: Sensor Fusion with Extended Kalman Filter

- Extended Kalman filter: can be interpreted as a Bayesian framework for sensor fusion
- Hidden Markov Model (HMM)

\[
x_t \quad z_t
\]

known initial state

unknown, evolving states

measurements
Must read: course notes on tracking!