virtual reality

the computer-generated simulation of a three-dimensional image or environment that can be interacted with in a seemingly real or physical way by a person using special electronic equipment, such as a helmet with a screen inside or gloves fitted with sensors.
remote control of vehicles, e.g. drones

simulation & training

visualization & entertainment

robotic surgery

architecture walkthroughs

virtual travel

a trip down the rabbit hole
VR at Stanford’s Medical School

- Lucile Packard Children’s Hospital: used to alleviate pain, anxiety for pediatric patients

- VR Technology Clinic: applications in psychotherapy, mental health, for people with phantom pain, …

- help train residents, assist surgeons planning operations, …
National Academy of Engineering

“Enhance Virtual Reality” is 1 of 14 NAE grand challenges for engineering in the 21st century
Exciting Engineering Aspects of VR/AR

- cloud computing
- shared experiences
- compression, streaming
- VR cameras
- sensors & imaging
- computer vision
- scene understanding
- photonics / waveguides
- human perception
- displays: visual, auditory, vestibular, haptic, …
- CPU, GPU
- IPU, DPU?
- compression, streaming
- VR cameras
- sensors & imaging
- computer vision
- scene understanding
- photonics / waveguides
- human perception
- displays: visual, auditory, vestibular, haptic, …
- CPU, GPU
- IPU, DPU?

Images by Microsoft, Facebook
Personal Computer
e.g. Commodore PET 1983

Laptop
e.g. Apple MacBook

Smartphone
e.g. Google Pixel

AR/VR
e.g. Microsoft Hololens
A Brief History of Virtual Reality

- **1838**: Stereoscopes by Wheatstone and Brewster, ...
- **1968**: VR & AR by Ivan Sutherland
- **1995**: Nintendo Virtual Boy
- **2012-2022**: VR explosion by Oculus, Sony, HTC, MS, ...

???
Ivan Sutherland’s HMD

- optical see-through AR, including:
 - displays (2x 1” CRTs)
 - rendering
 - head tracking
 - interaction
 - model generation

- computer graphics
- human-computer interaction

I. Sutherland “A head-mounted three-dimensional display”, Fall Joint Computer Conference 1968
Nintendo Virtual Boy

- computer graphics & GPUs were not ready yet!

Game: Red Alarm
Where we are now

IFIXIT teardown
electronic / digital
1968
HCI / haptics
1980s
low cost, high-res, low-latency!
2000s
Virtual Image

Problems:
- fixed focal plane
- no focus cues 😞
- cannot drive accommodation with rendering!

\[\frac{1}{d} + \frac{1}{d'} = \frac{1}{f} \]
Stereopsis (Binocular)

Vergence

Focus Cues (Monocular)

Accommodation

Binocular Disparity

Retinal Blur

Extraocular muscles

Relaxed

Contracted

ciliary muscles
Stereopsis (Binocular)

Oculomotor Cue

Vergence

extraocular muscles

Visual Cue

Binocular Disparity

Focus Cues (Monocular)

Accommodation

relaxed

contracted

ciliary muscles

Retinal Blur
Stereopsis (Binocular)

- Oculomotor Cue
 - Vergence
- Visual Cue
 - Binocular Disparity

Focus Cues (Monocular)

- Ciliary muscles
 - Relaxed
 - Contracted
- Visual Cue
 - Retinal Blur
Augmented Reality

(not really covered in this class, but closely related)
Microsoft HoloLens
Microsoft HoloLens

- diffraction grating
- small FOV (30x17), but very good image quality
Microsoft HoloLens 2

- laser-scanned waveguide display
- claimed 2K resolution per eye (2560x1440), probably via “interlaced” scanning
- field of view: 52° diagonally (3:2 aspect, 47 pixels per visual degree)
Video-based AR: ARCore, ARKit, ARToolKit, …
EE267 Instructors

Gordon Wetzstein
Associate Professor of EE/CS

Suyeon Choi
Research Assistants and EE267 – VR experts!

Manu Gopakumar
About EE 267

- experimental class, only taught at Stanford and also only a few times so far (help us improve it!)

- COVID-19 situation is particularly challenging for us – please be patient

- lectures + assignments = one big project – build your own VR HMD

- all hardware provided (shipped), but must return at the end

- enrollment limited, because it’s a lab-based class and we only have limited hardware kits

- 1 or a few guest lectures by leaders toward the end of the quarter
About EE 267 - Goals

• again, primary goal: build your own HMD!

• learn what is necessary to get there along the way:
 • computer graphics / real-time rendering
 • human visual system
 • magnifying optics
 • orientation (i.e. “3 DoF”) and pose (i.e. “6 DoF”) tracking

• very technical course! lots of math and programming!!
About EE 267 – Learning Goals

• understand fundamental concepts of VR and Computer Graphics

• implement software + hardware of a head mounted display

• learn basic WebGL/JavaScript and Arduino programming
What EE 267 is not!

- *not a* “build VR application in Unity” course, although you can do that in your project

- *not a* “here is a high-level overview of VR” course – you need to implement everything discussed in the lectures in your weekly assignments

- *not a* super hard course, but requires consistent work effort and time commitment throughout the quarter
HMD Housing & Lenses
6” or 5.5” LCD & HDMI Driver Board
VRduino
IMU & Teensy
Vibration Motors
Flex Sensors
HDMI Cable
2x USB Cable
HMD Housing and Lenses

- View-Master VR Starter Kit ($15-20) or Deluxe VR Viewer ($23)
 - implements Google Cardboard 1.0/2.0
 - very durable – protect flimsy LCDs
Display

- Small LCDs, either 6” or 5.5”
- HDMI driver boards included
- super easy to use as external monitor on desktop or laptop
VRduino

- Arduino-based open source platform for:
 - orientation tracking
 - positional tracking
 - interfacing with other IO devices
- custom-design for EE 267 by Keenan Molner
- all HW-related files on course website
VRduino

- Teensy 3.2 microcontroller (48 MHz, $20) for all processing & IO
- InvenSense 9250 IMU (9-DOF, $6) for orientation tracking
- Triad photodiodes & precondition circuit ($1) for position tracking with HTC Lighthouse
Some Student Projects - Input Devices

- data gloves with flex sensors
- different types of controllers with tactile feedback via vibration motors
- all connected to VRduino GPIO pins
About EE 267

• all important info here: http://stanford.edu/class/ee267/

• plenty of (zoom) office hours and Ed Discussion: see website

• contact: ee267-spr2122-staff@lists.stanford.edu
About EE 267 - Prerequisites

- strong programming skills required (ideally JavaScript)
do NOT take this course if you have not programmed!

- basic linear algebra required – we will start dreaming
 about 4x4 matrices (must know what a matrix, matrix-vector product, etc. is)

- introduction to computer graphics or vision helpful
About EE 267 – Lectures & Labs

• 2 lectures per week: Mo/We 9:45-11:15 am
 • Not sure yet how to support video recordings (please vote):
 1. No videos (default options)
 2. Recorded zoom sessions from last year
 3. Flipped classroom

• 1 lab per week starting in week 1 (do at home, will release writeups and videos with links to online tutorials and other important things)

• you will need the skills of the lab to complete the homework, so do the lab first and then start working on the homework!
About EE 267 – Labs & Assignments

- labs and homeworks released every Friday
- do all of these at home by yourself or in small teams
- we will hand out all required hardware (details later)
About EE 267 – Office Hours

- Gordon (instructor): Mondays 12:30-1:30 pm, zoom talk about projects, VR, course logistics, etc.

- Manu (TA): Tue, 2-3pm, zoom

- Suyeon (TA): Thu, 4-5pm, zoom talk about labs, assignments, ...

All zoom links are on canvas!
EE 267 – 3/4 unit version

Both versions:

- 6 assignments covering all aspects of VR tech: 2x basic computer graphics, 2x perception+graphics+optics, 2x tracking
- Final project (hardware, software, or perceptual experiments) worth ~ 2x regular homework

3 Unit version:

- 1-2 page project report

4 Unit version:

- 6–8 page project report required (more details on website)
EE 267W – 5 unit WIM version

- satisfies writing in the major requirement

- only available for undergraduates already enrolled in the 4 unit version

- will get extra weekly writing and peer-reviewing assignments + 2 writing / presentation workshops

- *talk to instructors if you want to do this in first week of class!*
Requirements and Grading

- **6 assignments** (teams of \(\leq 2 \)): 60%
- **80 minute (in-person or remote) midterm**: 20%
- **project** (teams of \(\leq 3 \)): 20%
 - discuss project ideas with TA & instructor!
 - final presentation (video recordings) due 5/25/2022 at 11:59pm
 - reports & code due (gradescope): 5/27/2022, 11:59pm
Course Project Deliverables

- **May 25 (11:59pm)**: submit your project presentation video
 - Record screenshots / videos of your demo or poster
 - see poster template on website (for non-demoable projects)
- Sorry, no final demo session due to COVID-19 😊
Course Project Deliverables

- **May 27 (11:59pm):** report + source code

- report (3 unit course version) = 1-2 page summary with the same topics listed below, just shorter (think “extended conference abstract”)

- report (4/5 unit course version) = conference paper format 6-8 pages with
 - abstract
 - introduction and motivation
 - related work
 - your thing
 - results, qualitative and quantitative evaluation
 - discussion, future work, and conclusion
 - references (scientific papers, not websites)
 - see latex template on website (will be there)
Possible Course Projects

• be experimental!

• for example:
 • Default: build an elaborate virtual environment, e.g. with unity
 • psycho-physical experiments (e.g. test stereo rendering with color/gray, low-res/high-res, …)
 • hardware projects: IMU, positional tracking, eye tracking, haptics, …
Relevant Scientific Venues

• ACM SIGGRAPH / SIGGRAPH Asia conferences (general computer graphics)

• IEEE VR, ISMAR, VRST conferences (focused on VR/AR)

• HCI conferences: ACM SIGCHI, UIST, …

• Optics journals: OSA Optics Express, Optics Letters, Applied Optics, …
Tentative Schedule

http://stanford.edu/class/ee267/
Questions?