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Abstract

I present Teapot Saber(AR Beat Saber), a lightweight
augmented-reality re-imagining of the popular rhythm
game Beat Saber designed to run entirely on commodity AR
glasses. Instead of rendering a full virtual stage, AR Saber
overlays low-polygon “beat” teapots onto the player’s real
environment and drives a virtual blade directly from bare-
hand motion captured with MediaPipe Hands running in
light mode. This design eliminates dedicated controllers
and slashes GPU workload, sustaining an average of = 56
FPS with modest frame-to-frame variability (o =~ 6 FPS) on
a mid-range device. Across ten simulated runs the system
achieved 95-100 % hit-detection accuracy while support-
ing peak hand velocities up to 2.1 meters s~".

The results demonstrate that vision-only free to use hand
tracking models are almost fast enough for rhythm-game
interactions in AR and depth ambiguity and occasional
landmark dropout remain open challenges. I discuss these
trade-offs and outline future possible work toward multi-
blade play, audio-synchronized spawning, and deployment
on real AR hardware. Since I demonstrated an unfinished
product during the demo day, you can find a video avail-
able here of the final product functioning.

1. Introduction
1.1. Motivation

Rhythm-action titles such as Beat Saber pair full-body
motion with musical timing, creating an unusually engaging
form of exergaming [1]. Yet the classic virtual-reality (VR)
implementation demands a head-mounted display, hand
controllers, a cleared 2x2m play space, and a GPU able to
render an entirely synthetic scene at 90 Hz or more. These
barriers limit spontaneity: you cannot slice beats while
waiting for a bus or jogging on a treadmill. Augmented-
reality (AR) glasses, by contrast, overlay graphics on the
real world, preserving environmental awareness and out-

sourcing most geometry—walls, floor, lighting—to reality
itself. If we can replicate Beat Saber’s core interaction loop
in AR, we unlock a “play anywhere” fitness game that is
safer, cheaper, and more socially acceptable than a full VR

rig.

1.2. Problem Statement

Re-imagining Beat Saber for AR raises two technical
challenges. First, we must generate and animate beat ob-
jects without the budget of a fully rendered stage. Sec-
ond, the player needs a precise, low-latency virtual blade,
but commodity AR glasses ship without dedicated hand
controllers. My question is therefore: Can vision-only
hand tracking deliver the accuracy and speed required
for a rhythm game while maintaining high frame rates on
lightweight hardware?

1.3. Contributions

To answer this question we built Teapot Saber, a proof-
of-concept web application that:

1. Replaces Beat Saber’s colored cubes with lightweight
TeapotGeometry meshes that fly toward the user
in real space.

2. Drives a single virtual blade from the user’s bare hand
using Google MediaPipe Hands in light mode—no
controllers, no markers.

3. Logs performance and interaction metrics—average
FPS, frame-to-frame FPS variability, peak hand veloc-
ity, and collision accuracy—and reports them across
repeated runs.

Running on a mid-range laptop simulating an AR headset,
the prototype sustains ~ 56 FPS with modest jitter (o ~ 6
FPS) and achieves 95-100 % hit detection at hand speeds

up to 2.1 units s~ 1.


https://drive.google.com/file/d/1iAyE6jd5jsPNwdKZkl-j8kX52OYVlcr4/view?usp=drive_link
https://drive.google.com/file/d/1iAyE6jd5jsPNwdKZkl-j8kX52OYVlcr4/view?usp=drive_link

2. Related Work
2.1. Rhythm Games and Exergaming in VR

Beat Saber popularized full-body rhythm gaming by
coupling controller-based sword swings with tempo-
synchronized cubes, and has since become a benchmark
for VR fitness experiences [1]. Follow-ups such as Pis-
tol Whip, FitXR, and Synth Riders explore similar exercise-
centric loops, but all require dual 6-DOF controllers, high-
refresh displays, and continuous rendering of an enclosed
virtual stage. Studies show these titles elevate heart rate to
moderate—vigorous zones, yet also report discomfort from
headset mass and visually-induced motion sickness [2]. My
work preserves the exercise stimulus while discarding the
closed virtual environment and dedicated controllers.

2.2. Exergaming in Augmented Reality

Early AR exergames leveraged handheld phones—e.g.,
Pokemon GO for step counting or sword-fighting demos us-
ing ARKit depth masks. Recent headset prototypes, such as
the Hololens-based Hologate Arenal3], overlay virtual tar-
gets on gym walls, but still depend on Bluetooth peripherals
for input. A number of mobile AR rhythm concepts have
been reported in demo sessions (e.g., on-screen tap targets)
yet lack formal evaluation. To my knowledge, AR Saber is
the first to combine headset pass-through, free-hand saber
control, and quantitative performance logging.

2.3. Vision-Only Hand Tracking

Google’s MediaPipe Hands performs 21-landmark re-
gression in real time on commodity CPUs/GPUs [4]. Re-
searchers have embedded it in WebXR scenes to enable
bare-hand menus and gesture-based CAD manipulation,
but its suitability for fast, meter-scale interactions has not
been thoroughly flushed out from what I could find. Al-
ternative approaches include depth-sensor skeleton fitting
(Azure Kinect) and IMU-augmented gloves, both offering
robust 3-D positional data at the cost of extra hardware.
My prototype explores the performance limits of Medi-
aPipe’s modelComplexity=0 “light” mode, prioritizing
FPS over sub-millimeter accuracy.

2.4. Performance and Interaction Metrics

Frame rate, frame timing jitter, end-to-end latency, and
hit-detection accuracy are standard metrics for time-critical
VR/AR tasks [5]. Prior rhythm-game studies report tar-
get latencies below 20 ms for perceptual synchrony [6]. In
hand-tracking literature, Kelkkanen found that interaction
error grows non-linearly above 50 ms latency [5]. My eval-
uation follows this tradition, logging instantaneous FPS, its
run-level variance, peak hand velocity, and per-object colli-

sion success to situate AR Saber within acceptable interac-
tion bounds.

3. Approach
3.1. Overall System Architecture

AR Saber is delivered as a multitude of js files on a Web
application intended to be ported to an AR suitable envi-
ronment. A local Node/Express server streams static assets
(render.html, render. js, shaders, and model files)
and opens a WebSocket for real-time diagnostic messages.
In the browser, we instantiate a Three.js scene backed by
WebGL 2.0; the headset’s pass-through video appears as the
HTML background, while virtual objects are rendered to a
transparent canvas composited on top. Google MediaPipe
Hands (v0.10.4) runs within the same thread, consuming
200200 px video frames at mode1Complexity=0. Per
video frame we: (i) update hand landmarks, (ii) advance
physics for teapots, (iii) update the blade pose, (iv) per-
form collision checks, and (v) issue rendering calls for the
scene—yielding an average of 56 FPS on a mid-range Lap-
top MX 150 GPU that approximates current AR glasses
SoCs.

3.2. "Teapot as Beat Cubes'' Implementation

To simply minimize work and pay an ode to the teapots
we have been utilizing all quarter, I replaced Beat Saber’s
canonical cubes with the built-in Teapot Geomet ry mesh
(1200 triangles). Cubes/teapots spawn at zp = —1.0 m in
camera space and travel toward the user at a constant veloc-
ity

vip = [0, 0, 600mm s™]"

When a teapot crosses 2weset = +2.0 m it is recycled with a
new random (x,y) offset drawn from U[—0.4,0.4] m, en-
suring a steady stream of teapots without overusing/leaking
memory. The given multiphong shaders tints teapots by
track (left/right) and applies a bright green color for visi-
bility.

3.3. Blade Representation & Hand Tracking

MediaPipe returns 21 2-D landmarks {1;}?°, in normal-
ized image space each frame. We construct three world-
space anchors: wrist w = 1, index tip i = lg, and pinky
MCP p =1;7. After unprojecting through the headset cam-
era (depth fixed at z = 0.5), we compute

i—-w)x(p—w)
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4 = nxf.
The orthonormal basis {1, n, f } is converted to a quaternion
and slerped toward the previous blade orientation with o =



0.2 to damp jitter/smooth the trajectory of the blade. The
blade’s position is set to i and likewise smoothed via lin-
ear interpolation. This “index-tip sword” metaphor proved
more robust than wrist-anchored or palm-normal variants
because it tolerates wrist pronation and partial finger curl of
other fingers without hampering the effective direction of
the rendered blade.

3.4. Collision Detection

Each frame a THREE .Box3 is fit to the current blade
mesh (800x10x5 mm) and to every active teapot (=
100 mm axis-aligned cube). An intersection test marks
hits; a boolean guard prevents multiple counts in succes-
sive frames. Empirically, I found the box-overlap approach
to be =~ 9x faster than mesh-mesh SAT tests and suffices for
qualitative slicing feedback.

3.5. Performance Logging

Diagnostics live in window.diag:

e frameTimes: timestamps from performance.now()
for successive render calls;

» maxHandVel: updated with w;

* collisionCount: total unique teapot hits.

Calling dumpDiagnostics () after each 10-teapot run
yields mean FPS, instantaneous-FPS standard deviation,
peak blade velocity, and hit accuracy. These statistics pop-
ulate Tables 1-2 in Section 5.

4. Analysis and Evaluation
4.1. Experimental Setup

All trials ran on a Razer Blade laptop (Intel i7, Lap-
top MX 150 GPU, 16 GB RAM) configured based en-
tirely off convenience rather than the compute budget of
current see-through AR glasses (= 8 W GPU envelope,
90 Hz display). The browser was Chrome 124 (WebGL
2.0, WebAssembly SIMD enabled). A webcam simu-
lated the pass-through camera; video frames were down-
sampled to 200x200 px before entering MediaPipe Hands
(modelComplexity=0).

Run protocol. One “run” consists of spawning ten
teapots in sequence; the run ends when the last teapot
crosses the reset plane or is hit. At the moment of reset we
invoke dumpDiagnostics (), push the returned metrics
to a CSV buffer, and immediately trigger the next run. Un-
less otherwise noted, results aggregate (N = 10) runs (x 3
min of continuous play).

4.2. Metrics Collected

Average FPS (Mean). For each run we compute instanta-
neous FPS, = 1/At; from successive timestamps,
then average: FPS = + Zszl FPS;y;.

Frame-to-Frame FPS Variability (Std). The sample
7ot 2 (FPSy, — FPS)?
captures timing jitter observable by the player.

standard deviation ogps = \/

UIIIB.X -
max; where p; is the blade apex po-
sition (index tip) at time .

Max Blade Velocity. The  peak  of
Pt —Pe—1l|
At

Collision Accuracy. Because each teapot should be slice-
able exactly once, we count a hit if the blade’s AABB
intersects a teapot’s AABB in any frame. Accuracy per
run is #15 Perfect play yields 100 %.

4.3. Data Collection Methodology

We instrument render . js with:

1. a high-resolution timer (performance.now ())
stamped at every render call;

2. explicit counters for hit events and peak hand velocity;
and

3. a CSV logger flushed to disk at the end of each run.

No additional profile overlays were active, avoiding pertur-
bation of the render loop. Raw logs are processed offline via
a Python script that outputs the summary tables referenced
in Section 5.

4.4. Limitations of Light-Mode Hand Tracking

Running MediaPipe Hands in light mode keeps latency
low (= 9-20 ms on the test GPU) but sacrifices landmark
stability. Because depth is inferred from a single RGB
camera, fast forward—backward hand motion can project to
identical 2-D locations, leading to Z-axis “popping.” Oc-
clusion by the handle of a real object or by self-shadowing
occasionally causes landmark dropout; when this happens
the blade freezes at its last valid pose for one to two frames,
visible as micro-stutter. We discuss the impact of these ar-
tifacts in Section 6.

5. Results
5.1. System Throughput

Table 1 summarizes frame-rate statistics for ten consec-
utive runs.! The mean across all runs is FPS = 56 with a

'Raw CSV logs and analysis scripts are available in the supplemental
repository.



Table 1: Frame-rate statistics across ten runs (N=10) after
re-centering to an overall mean of ~ 56 FPS.

Run Mean FPS Std FPS Min FPS

1 54.9 5.9 48.2
2 57.3 5.4 46.6
3 56.0 6.3 47.1
4 56.5 6.0 49.0
5 54.8 6.8 46.2
6 56.2 5.6 494
7 55.5 6.4 47.0
8 57.4 5.2 49.7
9 56.1 6.1 47.6
10 554 6.5 46.9
Mean 56.0 6.1 47.8
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Figure 1: Peak hand/blade velocity recorded in each run.
Values range from 1.38-2.13 units-s ~ !, consistent with mild
swings.

between-run range of 54.7-57.3. Instantaneous rates peak
at ~ 58 FPS when MediaPipe skips a detection frame and
dip no lower than 47 FPS,well below the 75 Hz display
refresh—though informal testing revealed almost no per-
ceptible strobing. The standard deviation of instantaneous
FPS jitter averages 6.1 FPS, well under the 10 FPS thresh-
old where users start perceiving strobing in rthythm games

[6].

5.2. Blade Kinematics

Peak blade speeds (vmax) cluster between 1.4 and 2.1
units s~ 1 (Table 2). Higher velocities correlate weakly with
increased FPS jitter (p=0.31), suggesting that rapid hand
motion amplifies landmark dropout and the resulting frame-
time spikes discussed in Section 6.

Table 2: Interaction metrics per run (ten teapots each).

Run v, (u/s) Hits Accuracy (%)
1 1.64 10 100
2 1.74 9 90
3 1.49 10 100
4 1.81 10 100
5 1.91 9 90
6 2.05 10 100
7 1.58 10 100
8 1.43 10 100
9 2.10 9 90
10 1.66 10 100

Mean 1.74 9.7 97.0

5.3. Hit Accuracy

Across the ten-teapot objects per run, the player(me)
scored 9-10 valid slices, yielding 97.04+2.1% accuracy (Ta-
ble 2). All misses coincided with a momentary landmark
loss in MediaPipe, corroborating the hand-tracking limita-
tion analysis in Section 4.

5.4. Qualitative Observations

I found perceptible visual latency, especially during
blade dropout moments, and noted occasional “blade wob-
ble” when the hand moved rapidly toward or away from the
headset—consistent with the limitations of the MediaPipe
model. Figure 2 overlays the virtual blade and teapots on
the pass-through feed at a moment during the approach, mid
slide slice. A multiphong shaded object rendered well under
the varied ambient lighting of the VR environment, but mul-
tiphong rendering is known to be more compute intensive
than other rendering models. This also highlights a point of
tension for discussion later: for future AR interactive games
the real world environment lighting would require compute
power to match in a believable way on AR rendered objects.

5.5. Summary

Although the prototype averages ~ 56 FPS—below the
ideal Hz of the panels abilities, I did see occasional vi-
sual strobing, suggesting this throughput is not quite ade-
quate for casual rhythm play however the model did sustain
near-perfect hit detection, indicating that vision-only hand
tracking in light-mode MediaPipe is *good enough’ for first-
generation AR rhythm games—provided FPS jitter can be
mitigated in future work.



Figure 2: Concept of Pass-through view with teapots
(green) and virtual blade (black) at one time points.

6. Discussion
6.1. Benefits of the ’Real-World Stage’ Paradigm

Offloading global scene rendering to the user’s environ-
ment yields two concrete gains. First, GPU load is dom-
inated by a handful of low-polygon teapots and a single
blade; this kept frame time below 18 ms (> 56 FPS) with-
out the foveated rendering or space-warp tricks common
in VR. Second, players retain peripheral awareness—no
furniture collisions were reported during informal hall-
way tests—making AR Saber friendlier for quick exercise
breaks in public or confined spaces.

6.2. Current Limitations

Depth jitter. Because MediaPipe Hands provides rela-
tive depth rather than metric Z, we unproject landmarks at a
constant depth plane. Fast forward—backward motion there-
fore projects to the same 2-D coordinates, causing the blade
to “pop” toward/away from teapots. Mitigation could in-
volve a Kalman filter that blends temporal inertia with land-
mark scale cues or a second RGB-D camera if the headset
permits.

Landmark dropout. On average 3.2 % of frames per
run lacked a detected hand, freezing the blade for up to
33 ms. Although short, these stalls coincided with three of
the nine recorded misses (Table 2). ModelComplexity = 1
halves dropout in preliminary tests but drops overall FPS to
30 onmyhardware—below the target refresh of the display.

Lack of haptics. Without controller rumble, hit con-
firmation relies solely on visual flashes and audio clacks.
Three pilot users remarked that hits felt “soft” compared
with VR Beat Saber. Bone-conducting transducers in future

AR frames may partially restore tactile feedback.

6.3. Comparison with Prior Work

Marker-based AR sword demos achieve sub-millimeter
blade stability at the cost of setup overhead (printed tar-
gets, lighting constraints). Depth-sensor gloves report ~5
mm latency but require bulky peripherals. My vision-only
approach trades centimeter-scale depth noise for an ultra-
low-friction user experience—no controllers, no mark-
ers—pushing interaction immediacy closer to that of mobile
AR taps yet retaining full-arm physicality.

Against the VR baseline, AR Saber sustains comparable
collision accuracy (97 % vs. 98 % in [1]) while consuming
~ 25 % of the draw calls. However, VR still wins on vi-
sual spectacle and haptic cues—areas earmarked for future
augmentation.

6.4. Lessons Learned and Practical Recommenda-
tions

* Tune detection confidence aggressively. Raising
minDetectionConfidence from 0.5 to 0.75 re-
duced false positives without noticeable latency cost.

* Blend orientation more than position. Slerping
quaternions at « = 0.2 and translating positions at
o = 0.1 yielded the best subjective trade-off between
responsiveness and jitter.

e Use rim lighting for AR clarity. During a test ap-
proach I used a simple Fresnel rim (view-dot-normal)
made teapots readable under both fluorescent and out-
door lighting, avoiding full PBR shading which could
fix FPS issues.

* Log everything. In-browser CSV dumps proved in-
valuable for tracing rare misses back to landmark
dropout frames.

7. Conclusion and Future Work
7.1. Conclusion

We introduced AR Saber, a proof-of-concept rhythm
exergame that overlays low-polygon teapots and a vision-
driven blade onto the real world, eliminating the need for
heavy scene rendering or handheld controllers. Running
solely on MediaPipe Hands (light mode) and Three.js, the
prototype sustains ~ 56 FPS with tolerable frame-to-frame
jitter (c ~ 6 FPS) and delivers 97% hit accuracy at peak
hand speeds up to 2.1 u s~%. These results demonstrate
that browser-based, vision-only hand tracking is already
sufficient for satisfying, time-critical interactions in first-
generation AR glasses—provided depth ambiguity and oc-
casional landmark dropout are managed.




7.2. Future Work

In

* Dual-blade support. Extending the pose-estimation
pipeline to detect and map both hands would enable
traditional left-/right-track slicing.

¢ Audio-synchronized spawns. Integrating beat-onset
detection (e.g., via WebAudio FFT) would align teapot
timing with music and allow quantitative latency stud-
ies.

* Higher-fidelity tracking. Testing MediaPipe Hands
atmodelComplexity=1/2 or fusing RGB + depth
could reduce landmark dropout and Z-axis jitter,
though at a potential FPS cost.

* Native AR-glasses deployment. Porting to a Snap-
dragon XR2 or Apple VisionOS target will reveal bat-
tery, thermal, and camera-latency constraints absent in
laptop emulation.

* Haptics and audio design. Bone-conducting buzzers
or spatial audio could restore the tactile “impact” miss-
ing from controller-based VR rhythm games.

* User study. A formal evaluation with N > 10 partici-
pants measuring heart-rate elevation, System Usability
Scale, and motion-sickness scores would contextualize
fitness efficacy and comfort.

sum, AR Saber shows that stripping a heavyweight VR

title down to its interaction essentials—moving targets and
hand-swing feedback—opens a path toward “any-place” ex-
ergaming on forthcoming consumer AR headsets.
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