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Abstract

Immersive VR/AR needs high-quality, consistent stereo
images. Single-view inpainting methods ignore stereo ge-
ometry, causing visual discomfort. Therefore, stereo con-
sistency in inpainting is essential for realistic and comfort-
able user experiences. Recent deep learning advances can
model relationships between stereo pairs. We adapt the Par-
allax Attention approach [3] for stereo image inpainting,
training from scratch on the 48k pairs of stereo images from
Flickr1024 dataset to achieve perceptually coherent results.

1. Introduction
Recent advances in virtual and augmented reality tech-

nologies have created an urgent need for high-quality stereo
image processing capabilities. While immersive VR/AR ex-
periences depend on consistent stereo imagery to maintain
user comfort and realism, traditional single-view inpaint-
ing methods fail to account for the geometric relationships
between stereo image pairs. This oversight leads to visual
inconsistencies that can cause discomfort and break im-
mersion. The challenge of maintaining stereo consistency
during inpainting—filling in missing or corrupted regions
of images—is therefore critical for delivering realistic and
comfortable user experiences in immersive environments.

To address this challenge, we propose a novel approach
that adapts the Parallax Attention Mechanism (PAM) from
PASSRnet [3] for stereo image inpainting. Unlike existing
methods such as SICNet [2], which relies heavily on ad-
ditional disparity networks and struggles with misaligned
inputs, our approach leverages PAM’s global receptive field
along epipolar lines to effectively aggregate features across
stereo pairs. We modify the original architecture to output
both left and right inpainted images simultaneously, ensur-
ing bidirectional consistency through a comprehensive loss
function that incorporates inpainting loss, left-right consis-
tency, PAM map consistency, and cycle consistency con-
straints.

Our model is trained from scratch on the Flickr1024 [4]

dataset, comprising 48,000 stereo image pairs, to learn the
complex relationships between corresponding views. This
extensive training enables the network to produce percep-
tually coherent results that maintain geometric consistency
across the stereo pair. By combining the flexibility of PAM
with multiple consistency losses, our approach achieves
improved stereo inpainting performance, resulting in re-
duced disparity between the left and right views compared
to vanilla PAM and ultimately contributing to more com-
fortable and realistic immersive visual experiences.

2. Related Work

SICNet SICNet [2] introduces an X-shaped convolutional
neural network designed to jointly inpaint both views of a
stereo pair. It is trained with a combination of reconstruc-
tion loss, adversarial loss, and stereo consistency loss to en-
force geometrically coherent inpainting across the left and
right images. While SICNet performs well in regular stereo
setups, it assumes well-aligned stereo pairs and relies heav-
ily on an auxiliary disparity estimation network. This re-
sults in high training costs and limits its robustness to mis-
alignment or noisy depth priors.

PAM PASSRnet [3] addresses the task of stereo im-
age super-resolution through a parallax-attention module
(PAM), which leverages a global receptive field along
epipolar lines to fuse complementary features across views.
It is capable of handling large disparity variations and bene-
fits from diverse loss functions to preserve structure. How-
ever, the original PASSRnet only enhances the left image
and is not designed for completing missing regions in both
views.

Our Approach. To leverage the strengths of PASSRnet
in stereo correspondence, we adapt it for stereo inpaint-
ing by retrieving the reconstructed right view from batch-
wise multiplication of parallax attention matrix and the re-
constructed left view. This hybrid design avoids the need
of ground truth disparity via PASSRnet’s powerful stereo



attention mechanism, aiming for coherent and structure-
preserving stereo inpainting.

3. Method

Our proposed approach leverages stereo inpainting uti-
lizing parallax-attention mechanisms and a comprehensive
composite loss function to ensure high-quality image com-
pletion and cross-view consistency. Given a masked stereo
image pair, the framework, shown in Figure 2, generates
two parallax-attention maps (PAM) to capture correspon-
dence between the left and right images. The PAM facili-
tates accurate reconstruction of missing regions by allowing
information transfer between views.

3.1. Parallax-Attention Mechanism

The parallax-attention mechanism (PAM) captures
stereo correspondence by attending to matching pixels
along epipolar lines. Given a stereo image pair with size
H×W , PAM produces attention maps of size H×W ×W ,
where each slice h ∈ H encodes dependencies between cor-
responding rows of the left and right images. When no dis-
parity exists, the attention maps resemble stacked H iden-
tity matrices, indicating direct pixel-to-pixel alignment. For
regions with disparity, attention shifts to off-diagonal po-
sitions that reflect the spatial offset between corresponding
features. Examples of parallax attention are shown in Fig-
ure 1.

Moreover, PAM can infer occlusion: regions without
valid matches are indicated by rows or columns lacking ac-
tive attention weights. This allows PAM to robustly align
features even under large disparity variations and partial oc-
clusion.

3.2. Loss Function

The total training objective combines inpainting error,
stereo photometric consistency, PAM smoothness, and cy-
cle consistency. The loss function is formulated as follows:

L = Linpaint + λ (Lphotometric + Lsmooth + Lcycle)︸ ︷︷ ︸
stereo loss

(1)

where Linpaint is an ℓ2 loss between the predicted in-
painted image and the ground truth, encouraging accurate
restoration of missing content.

The stereo loss components (Lphotometric, Lsmooth, and
Lcycle) regularize the solution by leveraging the inherent ge-
ometric and photometric relationships between stereo pairs.

Photometric loss (Lphotometric): Enforces left-right con-
sistency by minimizing the difference between a view and
its reconstruction from the counterpart via the PAM.

Figure 1. Example of parallax attention. The left column has no
disparity and the right column has 5 pixel of disparity. The yellow
line is the horizontal epipolar line which the parallax attention map
is generated upon.
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Smoothness loss (Lsmooth): Encourages spatial smooth-
ness in the PAMs by penalizing abrupt variations along spa-
tial dimensions, promoting coherent correspondence esti-
mation.

Lsmooth =
∑
M

∑
i,j,k

(
∥M(i, j, k)−M(i+ 1, j, k)∥1

+ ∥M(i, j, k)−M(i, j + 1, k + 1)∥1
) (3)

Cycle consistency loss (Lcycle): Ensures that mapping a
pixel from one view to the other and back via PAM should



return the original pixel, thus enforcing reliable cross-view
matching.

Lcycle =
∑

p∈Vl→r

∥Ml→r→l(p)− I(p)∥1

+
∑

p∈Vr→l

∥Mr→l→r(p)− I(p)∥1
(4)

In practice, each masked stereo input generates left-to-
right and right-to-left PAMs. These mappings enable re-
construction of one view from the other by aggregating in-
formation according to the parallax correspondences. For
instance, the right inpainted image is derived from the left
inpainted image using the left-to-right PAM (5), where ⊗
indicates batch-wise matrix multiplication. This process en-
sures that the underlying geometry and texture continuity
are preserved across both images, resulting in plausible and
consistent inpainted outputs.

Iinpaintr = Ml→r ⊗ Iinpaintl (5)

4. Results

4.1. Experimental Setup

The experimental setup involved training our model on
48,000 stereo image pairs from the Flickr1024 dataset. We
perform data preprocessing to standardize input size and
promote efficient learning. To prepare the dataset for stereo
image inpainting, we extract overlapping patches of size
120×360 pixels from stereo pairs in the Flickr1024 dataset
using a sliding window with a stride of 80 pixels. To simu-
late occlusions, each extracted patch pair is then corrupted
with a fixed central rectangular mask, which removes 25%
of the area by zeroing out a centrally located region. This
simulates missing content in both views while preserving
the geometric alignment. For each patch, we store the orig-
inal left and right images, the masked versions, and the cor-
responding binary mask for supervised training.

Evaluation was performed on the KITTI 2012 [1]
dataset, with the same data preprocessing to obtain 120×360
pixel patches to ensure consistency with the training condi-
tions.

To generate the baseline results, we train two indepen-
dent models—one for the left view and one for the right
view—using standard image inpainting without leveraging
stereo information. Each model receives a single masked
image as input and predicts the reconstructed version of the
same view. For consistency with the stereo setting, we repli-
cate the masked image and feed it into both branches of
the stereo inpainting architecture, effectively disabling any
cross-view interaction, which means that the PAM module

should only output identity matrix. When training the base-
line model, we only use the inpaint MSE loss without the
stereo loss. In this way, the left-view model is trained and
tested solely on the masked left image, and likewise for the
right-view model. This setup serves as a control that isolates
the contribution of stereo supervision by removing paral-
lax attention and stereo correspondence learning from the
pipeline.

The total training time was approximately 9 hours, while
testing took about 2 minutes, allowing us to comprehen-
sively assess the model’s stereo inpainting performance un-
der diverse and realistic conditions.

4.2. Qualitative Evaluation

The qualitative results in Figure 3 demonstrate the im-
portance of incorporating stereo consistency loss into the
training objective. Without the stereo loss, the model fo-
cuses solely on reconstructing the left view, and the right
view is generated through the learned parallax attention
mechanism. However, because the model does not receive
any explicit supervision on stereo alignment, it fails to learn
accurate correspondence between the two views. As a re-
sult, the reconstructed right view in the “Recon. w/o Stereo
Loss” column is often heavily blurred or distorted in the
masked regions.

By introducing stereo consistency loss during training,
the model is encouraged not only to reconstruct the left view
but also to learn a meaningful stereo mapping via the par-
allax attention mechanism. This results in more coherent
and aligned completions across both views. Interestingly,
we note that the right-view output with stereo loss is worse
than the baseline, despite using the PAM module. We hy-
pothesize that this is due to the masked regions lacking valid
stereo cues, which means that the mask has 0 disparity. This
confuses the attention mechanism during training.

4.3. Quantitative Evaluation

Method Left PSNR Right
PSNR

Disparity
RMSE

Baseline 33.27 33.31 0.8071
w/o stereo
loss

33.25 14.31 7.6461

w/ stereo
loss

33.06 25.12 1.0043

Table 1. Quantitative Results. We show the average PSNR over
800 validation KITTI image patches and RMSE to measure the
disparity map consistency.

We quantitatively evaluate the performance of our model
variants using PSNR for the left and right reconstructed
views and RMSE of the disparity maps of the reconstructed



Figure 2. Overview of the PAM model architecture for inpainting task.

Figure 3. Qualitative comparison of stereo inpainting results. Each group shows the left (L) and right (R) stereo images with masked
inputs (first column), baseline reconstruction (second column), reconstruction without stereo consistency loss (third column), and our final
model trained with stereo consistency loss (fourth column). The inclusion of stereo loss leads to more coherent and geometrically consistent
completions across both views, especially in structured regions such as building facades and car contours.

views. As shown in Table 1, the baseline achieves balanced
PSNR across both views, serving as a reference point. With-
out stereo loss, the model achieves a similar left-view PSNR
(33.25 dB) but suffers a severe drop in right-view quality
(14.31 dB), indicating that the parallax attention mecha-
nism alone fails to generalize stereo correspondence in the
absence of explicit supervision. Introducing stereo loss im-
proves the right-view PSNR to 25.12 dB, confirming that
stereo consistency guidance significantly enhances recon-
struction quality. However, the disparity RMSE increases

slightly compared to the baseline (1.0043 vs. 0.8071), and
visualization of the disparity map error, shown in Figure 4,
reveals that much of this error is concentrated in the masked
regions. This suggests that, while stereo loss helps enforce
geometric alignment, occluded or ambiguous regions re-
main challenging for disparity estimation and can confuse
the parallax attention module when supervision is sparse or
noisy. This will not only degrade the reconstruction of the
left view but also the attention.



Figure 4. Mean Disparity Error Maps across validation patches. Each map visualizes the mean absolute disparity error over 800
validation patches for (left) the baseline model, (center) the model without stereo loss, and (right) the model with stereo loss.

5. Conclusion

We presented a novel stereo image inpainting framework
that leverages the Parallax Attention Mechanism (PAM) to
enforce cross-view consistency. By adapting the PASSRnet
architecture and introducing a multi-term stereo loss, our
model effectively completes missing regions in both stereo
views while maintaining geometric alignment. Experimen-
tal results on KITTI2012 datasets demonstrate that incorpo-
rating stereo loss significantly improves right-view recon-
struction quality and reduces disparity error, validating the
importance of enforcing stereo constraints.

While our model does not outperform the baseline in
all quantitative metrics—particularly in left-view PSNR and
overall disparity RMSE—it provides valuable insights into
the trade-offs between reconstruction fidelity and stereo
consistency. Our findings highlight the importance of bal-
anced loss weighting and the challenges of learning reliable
disparity in occluded regions. These insights can inform fu-
ture work on stereo inpainting and other multi-view gener-
ation tasks, where geometric coherence is critical for down-
stream applications in immersive VR/AR environments.

5.1. Limitations and Future Work

Several limitations, such as blurriness of the right in-
painted image and suboptimal disparity RMSE, in our cur-
rent approach may explain these performance gaps:

• Feature Representation Mismatch: The stereo loss
may force the network to compromise detail recon-
struction in favor of stereo consistency, resulting in
blurrier outputs, particularly in the right view.

• Imbalanced Learning Objectives: The weight bal-
ancing between reconstruction quality and stereo con-
sistency appears suboptimal, causing the model to un-
derperform in one aspect while attempting to satisfy
the other.

• Disparity Estimation Challenges: Our method re-
lies on accurate disparity estimation, which remains
challenging in regions with occlusions, textureless sur-
faces, and reflective materials.

To address these limitations, we propose several promis-
ing directions for future research:

• Adaptive Stereo Loss Weighting: Implementing a
spatially-adaptive weighting mechanism that applies
stronger stereo constraints in regions with reliable dis-
parity estimates while relaxing constraints in ambigu-
ous areas.

• Attention-based Cross-view Fusion: Developing
specialized attention mechanisms that can selectively
transfer information between views without compro-
mising detail preservation, similar to approaches in re-
cent stereo video inpainting work [5].

• X-shaped Architecture: Designing an X-shaped
encoder-decoder architecture with two symmetric de-
coding branches—one for the left and one for the right
view—allowing the model to reconstruct both images
simultaneously. Cross-view features are fused through
a shared bottleneck or attention layers, enabling the
network to jointly reason about occlusions, correspon-
dences, and structural consistency across views. This
setup avoids the imbalance of using one view as the
supervisory target and promotes symmetrical learning
for stereo inpainting.
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