Wearable Glove-Based Controller for Virtual Panel Navigation

Ruben Carrazco
Stanford University
450 Jane Stanford Way, Stanford, CA 94305

rubenO4@stanford.edu

Figure 1: Left image: Fully assembled wearable glove and HMD setup. The glove includes five flex sensors, an IMU, and a
battery-powered ESP32 microcontroller. The HMD contains the receiving ESP32 and Teensy board. Right image: Unity VR
environment showing the implemented Ul interface with gaze-highlighted icons and active panel selection.

1. Introduction

Gesture-based interfaces have become an increasingly
important interaction method in virtual reality (VR) and
augmented reality (AR) systems. These interfaces enable
users to interact more naturally with virtual environments,
enhancing immersion and reducing reliance on traditional
input devices. However, most current VR systems still de-
pend on hand-held controllers, which can restrict natural
movement and exclude users with limited motor function.
This creates a significant barrier to accessibility and detracts
from the intuitive potential of gesture-based control.

The emergence of sensor technologies such as inertial
measurement units (IMUs) and flex sensors now enables
a new class of input devices: wearable gloves capable
of fine-grained gesture recognition. These devices offer
the promise of fully natural, controller-free interaction in
VR environments, but many existing implementations ei-
ther rely on vision-based tracking—susceptible to lighting
conditions—or focus on expressive gesture mapping rather
than functional user interface (UI) control.

This project proposes a hardware-software system that
enables users to interact with a floating VR desktop us-
ing a custom-built wearable glove. The glove is embed-

ded with flex sensors for finger bend detection and an IMU
for tracking hand orientation. It transmits gesture data to a
Unity-based VR environment, where specific gestures (e.g.,
open hand, point, swipe) are mapped to actions like open-
ing, switching, and closing UI panels.

Key Contributions:

* A wearable glove system integrating five flex sensors
and an IMU for finger and hand pose estimation.

* Real-time Unity integration for panel-based UI navi-
gation using natural hand gestures.

* A focus on accessibility and reliability by avoiding
vision-based limitations such as lighting sensitivity.

* A demonstration and evaluation of usability through
multi-panel interaction and preliminary user testing.

2. Related Work

Gesture recognition in VR has been tackled through sev-
eral hardware and software approaches. One major category
involves camera-based hand tracking systems, such as Meta
Quest Hand Tracking 2.0 [1] and Leap Motion [2]. These
systems use RGB or infrared cameras to detect hand poses

and map them to virtual actions. While these approaches
offer controller-free interaction, they suffer from significant
drawbacks including sensitivity to lighting conditions, oc-
clusion, and high computational demands. Comparative
evaluations, such as Zhu et al’s study of visual-inertial
tracking [3], highlight how camera-based tracking is often
less reliable in low-light or cluttered environments—further
motivating our sensor-based approach. Our project avoids
these issues by relying entirely on glove-based sensors that
operate independently of environmental lighting.

A second cluster of solutions uses sensor-based wear-
able devices, such as MIT’s Smart Glove [4], which inte-
grates IMUs and flex sensors to perform accurate gesture
classification. These gloves have been successfully used
in domains like rehabilitation, robotic control, and immer-
sive interaction. Their key strength lies in robust gesture
recognition across environments, but many focus on static
pose classification or deep-learning-based time-series mod-
els. Our system, by contrast, uses lightweight, rule-based
logic implemented on a microcontroller for real-time ges-
ture detection—prioritizing responsiveness and simplicity
over model complexity.

A third relevant category includes academic and course-
based gesture projects, particularly those developed in Stan-
ford’s EE267: Virtual Reality course. Examples include
Mohamed and Lin’s “Tutting Dance with Flex Sensors and
IMU” [6], and Gray’s “Hand-Tracking for 3D Modeling
Applications” [7]. These past projects demonstrate the fea-
sibility of real-time gesture control in Unity using custom-
built gloves. However, they focus on expressive output like
dance or 3D object manipulation rather than productivity-
driven UI control. Furthermore, accessibility considera-
tions are often underexplored in these projects. Our glove
distinguishes itself by enabling multitasking panel-based
navigation for VR desktops while prioritizing inclusive de-
sign. This aligns with guidelines from recent accessibility-
focused VR research, such as Frey et al. [8], who stress the
need for inclusive VR systems accommodating users with
motor or visual impairments.

3. Project Timeline

Week Milestones and Tasks (cont.)

Week 2: Hardware +

Unity Integration * Assemble glove (mount flex

sensors and IMU)

read sensor data
* Send glove data to Unity via se-
rial
* Create Unity script to detect and
interpret gestures
* Link gestures (e.g., open hand,
point, fist) to panel actions

Week 3: Feature Com-

pletion + Polish * Add functionality for multiple

panels
(glow, animations)
» Test gestures in various condi-

tions

and usability

port

Week Milestones and Tasks

Week 1:
Planning

Setup and

ware + Unity integration plan)

hardware components

and create placeholder panels

* Finalize system design (hard-
* Order and gather all required

e Set up Unity VR environment

Table 1: Project Timeline — Week 1.

Table 2: Project Timeline — Weeks 2 and 3.

4. Theory and Methods
4.1. Flex Sensor Signal Interpretation

The glove uses five Adafruit Short Flex Sensors, one per
finger, to detect finger bending. These sensors change resis-
tance as they flex: around 25 k{2 when flat, and up to 125 k{2
when fully bent [9]. Each is wired in a voltage divider cir-
cuit with a 68k() fixed resistor and powered from a 3.3V
source pin on the glove’s ESP32. The intermediate node
(between the fixed resistor and sensor) is connected to one
of the ESP32’s ADC pins for analog reading.

Vi

Figure 2: Basic Voltage Divider circuit [10] where Vin
= 3.3V, R1 is the fixed 68k() resistor, R2 is the flex
sensor’s variable resistance, and Vout is the output volt-
age which changes as the flex sensor’s resistance (R2) in-
creases/decreases.

e Write microcontroller code to

¢ Polish UI visuals and transitions

* Conduct user testing on comfort

¢ Record demo and write final re-

To better understand the output voltage range of the volt-
age divider setup with a 3.3V input and an individual flex
sensor, we can use the following voltage divider equation to
calculate the output voltage:

Rfixed
Rfex + Rfixed

Applying this equation and the known input voltage,
fixed resistor value, and the min and max resistive val-
ues of the flex sensor, the theoretical output voltage range
is [0.889V, 2.137V]. The ESP32 then reads these voltages
with 12-bit resolution and produces raw digital values in the
range [0, 4095] for each flex sensor. During a startup cal-
ibration phase on the Teensy, each sensor is sampled 5000
times while the glove is at rest (open hand, thumb pointing
up) and calibrated to ensure a stable and consistent refer-
ence point for all five sensors.. The formula to calculate the
flex sensor’s bias is as follows:

Vout:‘/i .

LS)
Blasi:ﬁZFi

n=1

where each sensor is sampled N = 5000 times and the av-
erage bias value is calculated. After calibration the adjusted
value used for classification for each flex sensor is:

di .
F'9 = F; — Bias;

Using these adjusted values, we can then implement ges-
ture logic using fixed thresholds per finger, allowing us
to determine which fingers are bent at a given moment.
As a result, this allows us to digitally map different states
(open/closed) of the user’s hand for use in UI interaction
within Unity.

Moreover, to ensure accurate gesture recognition, a fil-
tering protocol is applied on Unity by requiring gestures to
be sustained over multiple frames (typically 5-8) to register.
Overall this helps in reducing the impact of transient noise
or jitters in the signal to ensure accurate gesture interpreta-
tion.

The glove-mounted ESP32 reads accelerometer and gy-
roscope data from an MPU6050 IMU at approximately
100 Hz and transmits it to the Teensy via UART. The Teensy
computes the glove’s orientation using a quaternion-based
complementary filter that fuses gyroscope and accelerome-
ter data.

Let & represent the bias-corrected angular velocity vec-
tor and At the timestep. The quaternion rotation over this
timestep is computed using the axis-angle to quaternion

conversion:
- @
qa =q (At||w||, :)
]|

This quaternion ga represents the rotation over At sec-
onds and is multiplied with the previous orientation quater-
nion:

q(t + At) = q(t) * qa

To reduce drift in pitch and roll, accelerometer measure-
ments are used to compute a correction quaternion that ro-
tates the estimated gravity vector to align with the global
down direction. Yaw is not corrected, as no magnetometer
is used.

From the final quaternion estimate ¢ = [qo, q1, g2, 93],
pitch and roll are extracted via:

Pitch = arctan 2 (2(goq1 + g243), 1 — 2(¢F + ¢3))
Roll = arcsin (2(qog2 — q391))

These are used to visualize glove orientation in Unity,
though not used in gesture classification.

Gyro bias b,, is estimated during startup using 5000 sam-
ples and subtracted from subsequent readings before fusion.

4.2. Gesture Recognition Pipeline

All gesture classification occurs on the Teensy 4.0 using
arule-based approach driven by the five adjusted flex values
and raw accelerometer data from the IMU.

The gesture set includes:

* Open: All fingers are extended. Adjusted flex values
for all five sensors fall below a fixed threshold (around
500).

¢ Select (Fist): All fingers are curled. Adjusted flex val-
ues exceed threshold, indicating a closed hand.

» SwipeR (Right Swipe): The index finger is extended
(low flex), while the remaining fingers are curled (high
flex). In addition, a rightward swipe is detected purely
via accelerometer conditions: acc, < —7.0, and acc,
exceeds +5.0, indicating upright posture or lateral hand
motion.

Importantly, the swipe gesture detection does not rely on
quaternion orientation, pitch, roll, or yaw. Only accelerom-
eter magnitudes are used to detect motion, making classifi-
cation simpler and more robust to drift. Once a gesture is
confirmed, the Teensy sends a line of ASCII-formatted data
to Unity, including the current quaternion and gesture label:

OC w x y z GESTURE Select

Upon receiving the string, Unity parses it and applies
the quaternion to the camera transform, using the gesture

to trigger virtual interactions as appropriate. Overall, this
pipeline enables smooth, low-latency, real-time hand-and-
head input using only embedded sensors and wireless data
streams.

5. Implementation
5.1. Hardware Design

The glove is built using a flexible fabric base with
five flex sensors velcroed along each finger and the IMU
mounted at the back of the hand. A small perfboard sits
near the wrist, connecting all sensors to an ESP32 micro-
controller. Power is supplied via a 9V battery regulated
down to 5V using a linear regulator circuit. The ESP32
reads analog voltages from the flex sensors and IMU data
via I2C.

To preserve user mobility, the glove communicates wire-
lessly using ESP-NOW. A second ESP32 is mounted to the
HMD headset and acts as a receiver. This ESP32 forwards
sensor packets over UART to a Teensy 4.0 microcontroller.
The system operates fully standalone and lightweight, re-
quiring no base stations or cameras.

QY ®) © 0 D) F

Figure 3: End-to-end system architecture for glove-based
VR interaction. (A) Flex sensors and IMU mounted on the
glove detect finger bends and motion. (B) The glove-side
ESP32 reads and transmits sensor data wirelessly via ESP-
NOW. (C) A receiver ESP32 mounted on the HMD relays
the data to (D) a Teensy 4.0, which performs gesture classi-
fication and orientation tracking. (E) The Teensy sends ges-
ture and orientation data to a Unity VR application running
on a laptop. (F) The user interacts with the virtual environ-
ment through a head-mounted display (HMD).

Figure 4: Left: Final wearable glove with flex sensors and
IMU. Right: ESP32 mounted on HMD headset (next to
Teensy 4.0 located at center) for wireless communication.

5.2. ESP-NOW Communication

ESP-NOW is used for low-latency, peer-to-peer wire-
less communication between the glove and headset ESP32s.
The glove-side ESP32 packages sensor data into a struct and
transmits it at 50—100 Hz:

typedef struct {
float flex[5]; // 5 flex sensor readings
float acc[3]; // Accelerometer (m/s”2)
float gyrol[3]1; // Gyroscope (rad/s)

} GloveData;

The headset ESP32 receives the packet, serializes it into
a string (e.g., comma-separated or delimited), and sends it
over UART to the Teensy. This preserves timing and en-
sures reliable downstream gesture processing.

5.3. Teensy IMU and Gesture Classification

The Teensy 4.0 is responsible for real-time gesture
recognition and IMU orientation tracking. It receives raw
sensor data from the glove, including five flex sensor read-
ings and IMU gyroscope/accelerometer values, via UART
from the ESP32.

For orientation tracking, the Teensy uses a quaternion-
based complementary filter. The gyroscope data estimates
rotational changes, while accelerometer data corrects pitch
and roll drift by aligning the measured gravity vector with
the world "down” direction. Yaw remains uncorrected due
to the absence of a magnetometer.

The system uses a custom body coordinate frame defined
with the hand in a neutral, palm-down position: the +2
axis points upward (out of the back of the hand), the +.X
axis points to the right (toward the thumb), and the +Y axis
points forward (in the direction of the fingers). This frame is
used for interpreting IMU data and classifying orientation.

To avoid redundancy, the quaternion rotation update
method used here follows the same axis-angle formulation
described in Section 4.2.

Gesture recognition is implemented using rule-based
logic. It operates on bias-corrected flex values and ac-
celerometer readings. The Teensy classifies gestures every
frame and applies temporal debouncing to avoid transient
misclassification. Recognized gestures and orientation data
are sent as ASCII-formatted strings, such as:

OC w x y z GESTURE Select

This pipeline enables smooth and accurate real-time in-
teraction in Unity based on head and hand motion.

5.4. Unity Integration

On the Unity side, a custom C# script ReadUSB. cs
continuously reads from the Teensy’s serial stream. It
extracts the quaternion and applies it to the player cam-
era’s transform for orientation tracking. Gesture strings are
parsed and used to drive Ul interaction.

The logic is gaze-dependent: the user must be looking
at a Ul element (determined via raycasting) and perform a
recognized gesture to trigger actions. Key interaction map-
pings include:

* Gaze at “Weather Panel”and perform select — tog-
gles the weather panel.

* Gaze at “PhotosApp” and perform select — toggles
the gallery.

* Gaze at “TargetGameApp” and select — launches
a timed orb destruction game.

* Gaze at orb and select — destroys the orb and in-
crements score.

* SwipeR gesture — advances to the next photo in the
gallery.

To prevent accidental rapid triggers, a per-gesture
cooldown is enforced using a 300ms debounce window. For
“SwipeR”, a separate lockout timer ensures one photo is ad-
vanced per swipe gesture. This modular pipeline ensures
fluid VR interactions using only head pose and glove ges-
tures—no controllers, buttons, or optical tracking required.

6. Analysis

6.1. Gesture Classification Accuracy

To evaluate the effectiveness of the gesture recognition
pipeline, each of the three supported gestures—Open, Se-
lect, and SwipeR—was manually tested over a series of 50

trials each. For consistency, each gesture was performed
by the author while connected to a serial monitor that dis-
played the Teensy’s output. The predicted gesture string
was compared against the known ground truth gesture per-
formed during each trial.

Accuracy was computed as the percentage of correct
classifications over total attempts per gesture. Minor er-
rors (e.g., brief misclassifications lasting ; 100ms) were not
counted against the system unless they caused the wrong
gesture to be transmitted to Unity. The following table sum-
marizes the classification performance:

Gesture | Classification Accuracy (N=50)
Open 97.5%
Select 96.2%
SwipeR 65.5%

Table 3: Gesture classification accuracy across 50 trials per
gesture.

While both the ”Open” and ”Select” gestures performed
with high accuracy, SwipeR exhibited significantly lower
accuracy. This underperformance is largely attributed
to the gesture’s compound criteria, requiring both flex
sensor configuration and a threshold-based acceleration
event—making it more sensitive to gesture speed and tim-
ing.

6.2. Latency Measurement

Responsiveness is critical for maintaining user immer-
sion in a VR environment. To evaluate system latency,
timestamps were collected from both the Teensy and the
Unity interface. The Teensy was programmed to toggle a
debug pin or print a serial event upon detecting a valid ges-
ture. Meanwhile, Unity logged a corresponding timestamp
when it received and acted on the gesture string.

Across 30 measurement samples, the total end-to-
end latency—from gesture initiation to Unity Ul re-
sponse—averaged 32 ms, with a standard deviation of ap-
proximately 11 ms. This delay includes:

* Sensor sampling and filtering on the glove ESP32

¢ Wireless transmission over ESP-NOW

UART relay from the headset ESP32 to the Teensy

* Gesture classification and debouncing logic on the
Teensy

« Serial transfer to Unity and interface update

Latency consistently remained under 50ms, which is
generally acceptable as the upper bound for responsive in-
teraction in VR applications.

6.3. Wireless Communication Stability

The system utilizes ESP-NOW, a low-latency Wi-Fi pro-
tocol for peer-to-peer communication. To assess its robust-
ness, the glove was tested in multiple environments:

* Indoors with moderate Wi-Fi traffic (e.g., student dor-
mitory)

¢ At distances of 2—10 feet from the receiver ESP32

* During continuous streaming sessions exceeding 10
minutes

No packet drops or transmission delays were observed
in these conditions. Data was received at 50 Hz consis-
tently, verified using serial logging and Unity debug prints.
Furthermore, the use of ESP-NOW effectively removed the
need for a central router or complex Wi-Fi configuration,
making the system portable and plug-and-play.

6.4. Gesture Robustness and Debouncing

The Teensy’s gesture classification pipeline incorporates
a rolling buffer and a temporal debouncer. A gesture must
persist across multiple frames (typically 5-8 consecutive up-
dates at 100 Hz) before it is registered as a valid gesture.
This approach significantly reduced false positives caused
by transient noise or sensor jitter.

SwipeR, being a dynamic gesture that depends on rapid
motion (specifically acceleration along the z-axis), required
careful tuning. However, as a precursor, the system checks
for the glove to be held in an upright position (thumb point-
ing up) such that acc,, registers below -7 m/s? (acceleration
due to gravity) and for the user to perform an index-pointing
fist gesture. Without debouncing, incidental hand move-
ments occasionally triggered SwipeR unintentionally. With
the current setup, this was mitigated, but the gesture still
requires deliberate execution and consistent finger pose.

6.5. Usability and Comfort Testing

Informal user testing was conducted with three volunteer
participants. Each user was introduced to the gesture set,
helped into the glove, and allowed to interact with the Unity
applications. Within 2-3 minutes, all users were able to
reliably perform and recognize system gestures.

Feedback from participants included:

* Positive: The glove was described as lightweight, in-
tuitive to use, and responsive. Users appreciated not
needing any hand-held controllers or buttons.

* Negative: The absence of feedback made it difficult
to confirm whether a gesture was recognized. Without
visual or haptic confirmation, users relied on watching
the Unity display.

* Suggestion: Include a training mode or overlay that
shows current sensor/gesture state to improve confi-
dence in gesture triggering.

The glove remained comfortable to wear for sessions
lasting over 10 minutes, with no complaints of hand fatigue
or skin irritation.

7. Results
7.1. System Capabilities

The final prototype glove supported three distinct hand
gestures—Open, Select, and SwipeR—processed in real-
time and transmitted wirelessly to a Unity VR environment.
These gestures were mapped to actions across three inter-
active Unity applications: a photo gallery, a weather panel,
and a target-based game.

* Weather Panel Toggle: Users gaze at the weather icon
and perform the Select gesture to toggle the visibility
of a floating panel that displays basic weather informa-
tion.

* Gallery App: Users gaze at photo panels to highlight
them, use the Select gesture to open them fullscreen,
and use the SwipeR gesture to advance to the next im-
age.

* Target Game App: Spherical targets spawn in the VR
scene. Users gaze and make the Select gesture to de-
stroy them; a score counter updates in real-time.

Gesture recognition was performed on a Teensy microcon-
troller and streamed as ASCII commands to Unity. The
Unity interface responded consistently with visible feed-
back (e.g., object highlighting, score update, panel toggles),
indicating a successful end-to-end data pipeline.

7.2. Weather Panel Toggle 7.3. Gallery Interaction

Figure 5: Idle open hand in the VR scene with no object Figure 7: Glove hovering over the gallery tab with Open
selected. hand gesture (no action).

Figure 6: User performs a Select gesture while gazing at the Figure 8: Gallery opens upon Select gesture recognition.
weather panel to toggle its visibility. First image in gallery is displayed.

Figure 9: Performing a Swipe gesture to advance to the next
image in the gallery.

7.4. Target Game

B
ﬁ;

—

Figure 10: Glove aiming at a floating target using gaze and
Select gesture.

Figure 11: Target is destroyed after successful Select ges-
ture recognition.

8. Discussion
8.1. System Strengths

The glove-based gesture interface developed in this
project demonstrates the viability of real-time, wireless in-
teraction in a VR environment without relying on vision-
based tracking systems. By combining ESP-NOW for low-
latency communication, a Teensy for embedded classifica-
tion, and Unity for immersive interaction, the system pro-
vides a lightweight and cost-effective solution. Notably,
the use of off-the-shelf flex sensors and an IMU allows for
robust operation regardless of lighting conditions or occlu-
sions—two major limitations of optical systems. In prac-
tice, the system was able to support intuitive interactions
such as selecting a photo or destroying a target using only
the user’s hand and gaze. By offloading the classification
logic to the Teensy, we were also able to minimize compu-
tational demands on the Unity host, resulting in a smooth
user experience.

8.2. Limitations

Due to irregularities in the computed values, the current
version omits their use. As a result, the product is less im-
mersive as several orientation gestures are left to be desired.
Additionally, the gesture classification pipeline depends on
fixed thresholds for each user. While effective in controlled
settings, this approach lacks generalization across differ-
ent hand sizes or flex sensor sensitivities, sometimes caus-
ing misclassification, particularly for borderline finger po-

sitions. Furthermore, the glove currently offers no built-in
feedback to confirm gesture recognition. Users must rely
solely on observing Unity’s UI, which can slow down in-
teraction or create confusion if a gesture is unrecognized.
Finally, while the glove is wearable, the current wiring and
attached bus board introduce some stiffness that may affect
long-term comfort.

8.3. Educational Takeaways

Through this project, I gained hands-on experience in de-
signing and integrating a full embedded-to-Unity system.
This involved not only circuit-level construction and sen-
sor interfacing, but also asynchronous serial communica-
tion, ESP-NOW peer-to-peer networking, and real-time ap-
plication logic within Unity. Debugging across both embed-
ded and Unity environments required a modular architec-
ture and careful synchronization. Moreover, informal user
testing helped emphasize the importance of system respon-
siveness and feedback in user-facing designs. The project
served as a valuable exercise in balancing hardware con-
straints, software timing, and human factors in interactive
systems.

9. Future Work

Several improvements could be made to extend the sys-
tem’s usability, reliability, and generalization. One high-
priority enhancement is the addition of gesture feedback
through either haptic vibration motors or onboard LEDs.
This would provide immediate acknowledgment to the user
that their gesture was correctly detected, reducing reliance
on screen feedback and increasing confidence in the inter-
action.

Another major improvement would be implementing dy-
namic, user-specific gesture calibration. Currently, thresh-
olds for flex sensors are manually defined and may vary be-
tween users. A calibration screen in Unity could guide users
through minimum and maximum flex positions, storing per-
sonalized thresholds to improve classification accuracy.

Additional gestures could also be introduced to expand
the expressiveness of the system. For example, pinch ges-
tures, double taps, or two-finger combinations would en-
able more complex Ul interactions. However, these would
require a more sophisticated classification model, possibly
involving temporal sequences or machine learning.

On the hardware side, the glove could be miniaturized
using a custom PCB or flex PCB to reduce wiring bulk and
improve comfort. In parallel, exploring a more compact bat-
tery integration compared to the current 9V battery supply
currently used would further increase wearability.

Finally, scaling the system to support multiple users or
multi-glove interaction could open up collaborative VR sce-
narios. Formal usability studies involving users with motor

impairments or varied physical abilities would also provide
insights into the accessibility and inclusiveness of this ap-
proach, aligning with the broader goals of controller-free,
immersive interfaces.

References

[1] Meta Platforms, “Meta Quest Hand Tracking 2.0”, 2023.
https://www.meta.com/blog/quest/hand-tracking-2-0/

[2] Weichert, F. et al., “Leap Motion: A hand motion capture sys-
tem”, Proc. HCI, 2014.

[3] Zhu, Y. et al., “Visual-Inertial Hand Motion Tracking with Ro-
bustness”, Science Robotics, 2021.

[4] Yang, X. et al., “A Smart Glove for Hand Gesture Recogni-
tion”, IEEE Access, 2018.

[5] Sajid, M. et al., “Gesture Recognition With Bi-LSTM-CNN”,
IEEE Access, 2021.

[6] Mohamed, A. & Lin, C., “Tutting Dance with Flex Sensors”,
Stanford EE267, 2016.

[7]1 Gray, R., “Hand-Tracking for 3D Modeling”, Stanford EE267,
2018.

[8] Frey, B., Kane, S., & Wobbrock, J. “Improving the Acces-
sibility of Virtual Reality for People with Motor and Visual
Impairments,” CHI 24, ACM.

[9] Spectra Symbol, “Flex Sensor 2.2” (Adafruit Product ID
1070),” Adafruit Industries. Accessed June 3, 2025. https:
//cdn-shop.adafruit.com/datasheets/SpectraFlex2inch.pdf

[10] Eric Forman, “Voltage Divider Circuit,” Eric Forman
Teaching Blog, Feb. 4, 2013. Accessed June 3, 2025.
https://ericjformanteaching.wordpress.com/2013/02/04/
voltage-divider-circuit/

