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Abstract

Virtual Reality and Augmented Reality devices face in-
herent constraints in power consumption and computa-
tional resources, yet require accurate 3-DOF orientation
tracking for optimal user experience. While more sophisti-
cated algorithms are computationally feasible on these plat-
forms, it remains unclear whether the additional computa-
tional overhead translates to meaningful improvements in
user experience. This study investigates the relationship
between algorithm complexity and user-perceived perfor-
mance by comparing four orientation tracking algorithms:
Extended Kalman Filter (EKF), Madgwick, Mahony, and
complementary filter approaches. Through user testing with
16 participants, I evaluated whether computationally inten-
sive algorithms provide superior user experience compared
to simpler alternatives on a resource-constrained VR de-
vice. Results indicate no significant correlation between
algorithmic complexity and user-reported experience qual-
ity, suggesting that simpler, more power-efficient algorithms
may be preferable for battery-powered immersive devices
without sacrificing user satisfaction.

1. Introduction and Motivation
Virtual Reality device design involves critical tradeoffs

between performance, power consumption, and user expe-
rience. While some challenges like display optimization re-
main active research areas, orientation tracking represents
a well-established domain with multiple proven algorithms
ranging from simple complementary filters to complex sen-
sor fusion techniques.

In today’s competitive technology landscape, engineers
often operate under the assumption that available compute
should be fully utilized, gravitating toward sophisticated al-
gorithms when processing power permits. However, this
”compute is free” mentality raises a fundamental ques-
tion: does increased algorithmic complexity actually im-
prove user experience?

This study evaluates whether computationally intensive

orientation tracking algorithms provide better user experi-
ence compared to simpler alternatives, providing empirical
evidence to guide resource allocation decisions in VR sys-
tem design.

2. Related Works
Orientation tracking algorithms have a rich history in

navigation applications [2], where accurate dead reckon-
ing is critical for GPS-denied systems. However, for Virtual
Reality technology, which has only emerged as a consumer
platform within the past decade, limited research exists ex-
amining the relationship between algorithm choice and user
experience.

LaValle et al.’s 2014 paper [1] represents one of the
few works that explicitly considers how orientation algo-
rithm design impacts VR user experience. While the au-
thors claim their complementary filter approach improves
user experience, they provide no methodology for measur-
ing this improvement, nor do they justify why this approach
was selected over alternatives such as Extended Kalman Fil-
ters, Madgwick, or Mahony filters.

Most existing literature, such as Cocoli et al. [4], eval-
uates orientation tracking algorithms purely on technical
metrics like reprojection error relative to ground truth tra-
jectories. While these approaches provide insights into al-
gorithmic accuracy, they disregard human factors that de-
fine VR user experience, failing to account for natural hu-
man movement patterns or perceptual factors such as mo-
tion sickness that directly impact user comfort.

This gap between technical performance metrics and ac-
tual user experience motivates the need for user-centered
evaluation methodologies that can inform algorithm selec-
tion for consumer VR devices.

3. Experimental Method
To assess different algorithms while ensuring users en-

gage in realistic VR tasks, I developed a controlled experi-
mental environment that mimics typical VR usage patterns.



Figure 1. Bird’s eye view of Maze users traverse.

Figure 2. Ghost chases you down.

3.1. Game

I created a maze escape game in Unity that challenges
users to navigate through a procedurally generated maze
while being pursued by a ghost. Orientation tracking is
controlled by natural head movement, while translation is
controlled using keyboard input (WASD keys). The maze is
procedurally generated to prevent learning effects. Figure 1
shows an example maze configuration.

The player and walls have collision hitbox to prevent the
user from looking or moving through a wall. The ghost
does not and can follow users through walls. The trees and
foliage was made using JP Environmental Asset Package,
the sky was obtained from AllSkyFree, and the ghost was
found on a the official Unity subreddit.

3.2. Algorithms

I evaluated four orientation tracking algorithms using ac-
celerometer and gyroscope data from an IMU. While sen-
sors were not formally calibrated prior to testing, empirical
observation confirmed near-expected performance. The al-
gorithms, ordered from least to most computationally inten-
sive, are described below with their quaternion-based im-
plementations:
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where α is your complementary gain.
Mahony AHRS Filter(PI based complementary):
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where e represents the cross product error between esti-
mated and measured gravity, and Kp, KI are the propor-
tional and integral gains.

Madgwick Filter (Gradient-descent based) [4], [3]:

q∇,t+1 = −β
∇f

∥f∥
(5)

q̇ω,t+1 =
1

2
q̂t ⊗

[
0, ωt+1

]T
(6)
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where β is the step size, f(q) represents the objective func-
tion incorporating accelerometer measurements, and ∇f is
the jacobian matrix applied on f.

Extended Kalman Filter (Full Probabilistic Estima-
tor) [4]:
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where Ω(ωt) is the lie algebra generator for SO(4) ie a
skew-symmetric matrix that when exponentiated represents
a finite rotation, H is known as the Innovation which is just
the Jacobian as acquired in equation 4, and Ii is an identity
matrix of size i.

Regarding implementation, the complementary filter fol-
lows the starter code, the Mahony and Madgwick filters are
implemented as described by Çoçoli and Badia [4], and the
Extended Kalman Filter (EKF) implementation is adapted
from the online AHRS documentation,cite.

https://ahrs.readthedocs.io/en/latest/filters/ekf.html#id6


Figure 3. Average comfort ranking versus algorithm, averaged
over 14 users (lower is better).

3.3. Procedure

To ensure consistent experimental conditions across all
participants, we implemented a standardized testing proto-
col. Each user first completed a 5-minute familiarization
period with the VR environment using the linear comple-
mentary filter to establish baseline comfort with the system.
Subsequently, users attempted to escape the maze for 2.5
minutes using each of the four algorithms in randomized
order. After each trial, participants rated their tracking ex-
perience on a 10-point scale, focusing on perceived smooth-
ness, responsiveness, and overall comfort. To prevent bias,
participants were not informed that the orientation tracking
algorithm varied between trials.

4. Results

With data from 16 different users, 14 of them were able
to notice orientation algorithm changes.

4.1. Quantitative

Fourteen participants ranked the four algorithms in order
of preference on a comfort scale, where lower values indi-
cate better user experience. The Mahony filter achieved the
highest user satisfaction with an average ranking of 1.69,
followed by Madgwick at 1.92, EKF at 2.62, and comple-
mentary filter at 3.62. These results are summarized in Fig-
ure 3. The computational requirements varied dramatically
across algorithms. The complementary filter (α = 0.05) re-
quired approximately 56 operations per update, while the
Mahony filter (Kp = 0.9, KI = 0.02) needed 98 operations.
The Madgwick filter (β = 0.05) consumed 116 operations,
and the EKF (σ2

Q = 0.001, σ2
R = 0.2) demanded 637 op-

erations per cycle. To examine the relationship between
computational cost and user satisfaction, we computed a
”computational efficiency metric” by multiplying each al-
gorithm’s comfort ranking by its operation count. This met-
ric is shown in Figure 4.

Figure 4. Average comfort times # of operations (lower is better).

4.2. Qualitative

User feedback revealed distinct perceptual differences
between algorithms that aligned with their underlying math-
ematical approaches. The complementary filter was con-
sistently described as ”jumpy” or ”jerky,” reflecting the
absence of sophisticated noise filtering in this basic sen-
sor fusion approach. Without integral error correction or
gradient-based smoothing, rapid sensor fluctuations trans-
lated directly into orientation updates.

The Mahony filter received the most positive qualita-
tive feedback, with users describing the experience as ”very
smooth and natural.” This perceived smoothness corre-
sponds to the filter’s PI controller architecture, where the
integral term accumulates error over time to provide stable,
consistent corrections that reduce high-frequency noise and
sudden orientation jumps.

Users characterized the Madgwick filter as ”smooth yet
delayed,” noting a perceptible lag in response to head move-
ments. This delay reflects the gradient descent optimization
process, where smaller step size parameters prioritize sta-
bility and noise reduction at the cost of responsiveness. The
algorithm’s iterative approach to minimizing orientation er-
ror inherently introduces latency compared to direct correc-
tion methods.

The EKF implementation elicited mixed responses, with
users describing it as ”jittery but responsive.” This appar-
ent contradiction stems from the filter’s sensitivity to sen-
sor calibration accuracy. While the EKF responded quickly
to genuine head movements (responsiveness), the uncali-
brated accelerometer introduced measurement uncertainties
that propagated through the covariance matrix, manifesting
as small but perceptible orientation jitter during stationary
periods.

5. Conclusion
The quantitative and qualitative results converge on a

clear conclusion: the Mahony filter provides optimal per-
formance for compute-constrained VR environments, con-
tradicting the conventional assumption that available com-



putational resources should be fully utilized. This finding
directly challenges the ”compute is free” mentality preva-
lent in modern engineering, demonstrating that algorithmic
sophistication does not guarantee superior user experience.

The poor performance of the EKF was particularly sur-
prising given its theoretical advantages and superior per-
formance in controlled studies such as Çoçoli and Badia
[4]. I attribute this discrepancy primarily to sensor calibra-
tion limitations. The EKF’s probabilistic framework relies
heavily on accurate noise models and calibrated sensor in-
puts; without proper accelerometer and gyroscope calibra-
tion, the filter’s predictions become unreliable, leading to
the observed jittery behavior despite consuming 11× more
computational resources than simpler alternatives.

Several factors may have influenced the results and war-
rant consideration in future research. Recency bias could
have affected participant ratings, where experiencing a
smooth algorithm immediately after a poor one (or vice
versa) may have skewed comparative scores. To mitigate
this bias in future studies, we recommend implementing
randomized algorithm presentation orders with washout pe-
riods between trials.

The absence of magnetometer data represents another
significant limitation. While our IMU included a mag-
netometer, it remained uncalibrated and was therefore ex-
cluded from all algorithms. Properly calibrated three-axis
magnetometer fusion could potentially improve EKF per-
formance by providing additional heading reference infor-
mation and reducing yaw drift, particularly for the more so-
phisticated filters.

Parameter optimization across diverse movement pat-
terns proved challenging. VR applications encompass both
rapid head movements (> 200◦/s) and subtle tracking ad-
justments (< 10◦/s), making it difficult to find filter param-
eters that perform optimally across this full dynamic range.
Future work should investigate adaptive parameter schemes
that adjust filter gains based on detected movement inten-
sity or implement motion-dependent switching between al-
gorithm configurations. Despite these limitations, the re-
sults provide compelling evidence that computational ef-
ficiency should be prioritized over algorithmic complexity
in practical VR implementations, particularly when sensor
calibration infrastructure is limited—a common constraint
in consumer VR development.
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