HMD Implementation in Unreal Engine with 3-DOF Tracking
Using Real-Time Serial Data from Arduino

Andrew Bechdolt
Department of Electrical Engineering
mohuna@stanford.edu

Abstract

Despite advancements in virtual reality (VR)
hardware and software, the software development
landscape remains dominated by Unity Engine and
reliance on commercial head-mounted displays
(HMDs). To address this, we aim to expand VR
prototyping beyond Unity and existing HMD
ecosystems by implementing a pipeline in Unreal
Engine to support any display and real-time three
degrees of freedom (DoF) serial input in custom
Unreal environments. To demonstrate, we present a
VR experience developed in Unreal Engine on our
E267 Viewmaster HMD. The headset streams
real-time quaternion data from an Arduino Teensy
using inertial measurement unit (IMU) sensors, and
renders a stereo scene with distortion correction for
immersive viewing. The experience draws aesthetic
inspiration from the Apple TV+ series Severance,
incorporating interactive audio-visual events and
custom scenebuilding. This work highlights the
potential of hardware-agnostic VR development and
creates a path forward for future implementations.

1. Introduction

With advances in display, processing, and sensor
technology, Virtual Reality is rapidly becoming a
more accessible and attractive industry. In 2022, the
VR market was sized at 59.96 billion USD with a
predicted compound annual growth rate of 27.5%
until 2030 [1]. Despite this, most virtual reality
content development today is constrained to a few
software environments (e.g., Unity) and existing
commercial HMDs (e.g., Apple Vision Pro, Meta

Quest).

Our goal is to expand accessible VR prototyping
by developing a 3-DoF HMD experience for the most
elementary of VR headsets in Unreal Engine to
harness powerful game and scene building tools. This
opens up new creative possibilities for developers
and designers working with minimalist, open source,
and low-cost VR systems.

Dina Hashash
Department of Computer Science
hashash@stanford.edu

Arduino is an open source hardware and software
platform for microcontrollers. It maintains a wide
user base and support network. Arduino devices
range from low-power to ultra-high performance
devices, all interoperable and programmably
swappable. While many products supported by the
Arduino environment support serial communication,
such as the Arduino nano and ESP32, for our project
we leverage an Arduino supported Teensy, reading
from an MPU-9250 IMU. The Arduino Teensy is
lightweight, easy to program, and, as demonstrated
through multiple course assignments, capable of
real-time reading and writing orientation for HMD
tracking.

Unreal Engine (Unreal) is a competitor to Unity in
development of gaming and visual effects. Unreal’s
focus on professional level quality has paved the way
for high quality lighting, shading, and textures for
real-time photoreal and immersive experiences.
Unreal blueprint and C++ integration also make it
easy to learn for introductory projects. Given support
for implementing VR, Unreal becomes a promising
alternative to Unity. To demonstrate the power of
Unreal, we integrate our HMD into an immersive
Unreal Engine Scene. We leveraged Unreal’s
lighting, interactive environment, and spatial sounds
to create an unsettling experience.

Inspired by the eerie and stylized atmosphere of
Severance [2], our interactive demo blends story,
spatial design, and real-time hardware integration to
immerse the player.

2. Related Work
2.1. Tracking and Orientation

Most available consumer VR applications rely on
proprietary tracking systems and environments from
the headset designer. These headsets are usually
capable of 6-DoF orientation and position tracking
using either outside in tracking, as with the Oculus
Rift, HTC Vive, and Playstation VR, or with inside
out tracking, such as with the Meta Quest and Apple
Vision Pro. These devices rely on a combination of

IMU data including gyroscopes, accelerometers, and
magnetometers as well as visual data including
infrared and image capture to accurately track the
headset, controllers, and user. This method is more
accurate, but more complex and expensive, than our
3-DoF method using just an accelerometer and
gyroscope for orientation tracking.

2.2. Development Environments

Academic projects using IMU tracking often
utilize Unity due to more seamless serial
communication support and plugin availability.
Course materials from EE267 provide a serial
streaming solution for Unity-based tracking, but
Unreal remains less explored. Unreal is more popular
for hobby and professional development of non-VR
and commercial VR plugins given its OpenXR
implementation and additional libraries for SteamVR
and HTC.

2.3. HMD Implementation

From past efforts, both Unity and Unreal Engine
have HMD support for different headsets and
environments. In addition to proprietary standards,
the common standard for developers on both
platforms is OpenXR [3]. OpenXR is an open source
and royalty-free standard wused for adapting
experiences to AR and VR. It allows for the design of
new VR platforms and HMDs and is interoperable
with most VR HMDs and software (Fig 1). This does
not work with our current display, which connects
directly over HDMI with no on-board communication
available for OpenXR.

XR APP / XR APP / XR APP /
EXPERIENCE EXPERIENCE EXPERIENCE

@en\’(nm APPLICATION INTERFACE

Companies with conformant OpenXR implementations

C (O Meta MagicLeaBk

Scer miByedance Canon O R
cotLasoma

B® Microsoft XREAL Qualcowmn SONY @sTEAMVR VArdo

Figure 1: A flowchart of OpenXR Application
Interface between experiences, engines, and VR
devices, sourced from [3].

Unreal Engine also provides support for a plugin
called SimpleHMD. Simple HMD is capable of
converting a stereo-camera output to the left and right
eye in the VR environment. However, when we
attempted to use it in our third-person or first-person
environment we were unable to output proper images,

with the right eye displaying garbage data (Fig. 2).
The SimpleHMD plugin also did not allow for
distortion correction, which would be essential for
maintaining straight lines along the display edges.

Figure 2: VR Display in 3rd Person Environment
using SimpleHMD Plugin.

3. Method

3.1. Hardware and Serial Streaming

We used the class-built HMD, powered by an
Arduino Teensy and InvenSense MPU-9250 IMU.
Using Velcro, the board containing the Arduino and
IMU are mounted to the front of the ViewMaster
Headset as shown in Fig. 3. Using the code from
EE267 homework 5, the tracking software fused
accelerometer and gyroscope data read from IMU to
form quaternions that represent the orientation of the
headset. The quaternions are sent over serial at a baud
rate of 115200 in the form:

QCWXYZ

Figure 3: VRduino, including Arduino Teensy and
MPU-9250 IMU mounted to the View Master HMD
with X and Y axis reference for relative IMU
orientation.

We then implemented the Serial COM plugin [4],
in Unreal Engine, connecting the Arduino Teensy and
allowing for serial data to be used in the environment.

3.2. Unreal Engine Serial Integration

The Unreal scene is built from the third-person
game template, which we modified to support stereo
rendering and headset control. Once per game tick, a
blueprint system reads serial data and orients the
in-game camera (rigged to the head bone of the
player pawn as described further in 3.3) based on
calculated quaternions. To do so, we map the
orientation of the VRduino, (right hand orientation
with Y up) to Unreal (right hand orientation with Z
down'), as seen in Table 1.

Camera Space Sensor Space

Y Y
X -Z
Y X
Z -Y

Table 1: Sensor space axes from the serial input of
the quaternion to the Unreal Engine rotation
quaternion, before rotating 180 degrees to adjust to
world space.

1. Unreal’s axes of orientation are right handed with z-up, however, for
reference orientation before the 180 degree rotation, the z-axis remains
down. The final orientation after rotating about the y-axis is with z-up.

camera R aiget is S

Target Retum Value @ [~

F Get Actor Rotation

] Retumvalve @

¥ Set Relative Rotation

» » ¥ Set Actor Rotation
Target \ —
i »

et | Return Value

The quaternion is then rotated 180 degrees about
Y. Combined, these transformations result in the
correct orientation mapping about all 3 axes (Fig. 4).

z
X\/Z —Ytot X4 Rot:SO Vx
z

XtoY degrees
Zto-X aboutY
Figure 4: Axis mapping from serial input
quaternion to camera space.

This transformation is then applied to the camera
in the Third Person Blueprint, as depicted in Fig. 5. It
remains a computationally cheap method of
remapping axes versus rotating the relative
orientation in sensor space to match our Unreal
environment .

The camera orientation is then mapped to the
player location and controller orientation. This allows
movement to be relative to the viewing direction.

(Fig. 6).

Figure 6: Character and motion orientation update from camera direction.

3.3. Unreal Engine HMD Output

To properly recreate a stereo view, we
implemented a modified stereo-camera scene capture.
The scene is captured from the perspective of the
third person actor. In game development, this is the
pawn controlled by the player. Here it serves as
reference for the camera height and movement. Two
SceneCapture2D objects are attached to the pawn’s
head spaced 63 cm apart to match the IPD of the
View Master headset (Fig 7).

W+« CameraR

[RightEyeCapture
[l LeftEyeCapture

Figure 7: Implementation of Stereo Scene Capture
attaching scene capture as children of the
third-person character (Imaged right).

The scene captures are then applied to a render
target, stored as a texture. The render target is then
applied to custom user interface (UI) materials, as
shown in Fig. 8.

e

Figure 8: Mapping of the SceneCapture object (left,
to the render target texture, middle, which is used in
the material for display, right).

In the material, the UV map is adjusted to apply
barrel distortion, increasing the distortion based on
distance from the center as specified in [5],

2 4
xd~xu(1 +Kr +K2r)

2 4
ydzyu(l +Kr +K2r)

Where xu and yu are the undistorted coordinates
of the UV texture map, r is the distance from the
eye’s center, and xd, yd are the distorted coordinates
with K, =K, =2.

Each image is then applied to a user interface
widget, with the left half of the display, bisecting the
complete canvas between the two viewpoints. We
then overlay the Ul on top of the viewport, and

ensure it runs for the duration of the experience, as
visualized in Fig 9.

Figure 9: User interface overlay of the stereo view
using a User-Interface (UI) canvas and captured
scene saved and distorted to the Ul materials.

3.4. Scene Design and Interaction
We designed a fully immersive office scene
inspired by Severance, shown in Fig. 10, using a mix
of custom-modeled and sourced assets. The desks
were imported from an existing model, but the
entirety of the rest of the scene and props [6] were
built and textured manually using a hybrid of Blender
and Unreal. Worldbuilding included:
- Footstep SFX tied to the pawn’s animation,
with randomized pitch per step.
- A proximity trigger that plays the Severance
elevator SFX and theme song /7/.
- Environmental light flickering tied to the music

cue.
- A moody, minimalist lighting setup of emissive
material optimized for atmosphere.

Figure 10: Minimalist office environment modeled on
the office from Severance with emissive lighting and
shadows.

4. Analysis & Evaluation

We achieved a complete 3-DoF interactive VR
experience in Unreal depicted in Fig. 11. We
confirmed stable orientation tracking with
perceptually low drift over 1 hour of operation.

Acceleration

MPU-

?I\%ilo Angular Velocity ey DISplay
Compensated
Orientation Stereo
Measurement Image
¢ Update | | serialRead | | | r-=--=-4------1
! Relative | ""'1‘""' | Split canvas for !
! Player ittty | stereoviewing !
|_Rotation_} 1 AXis i yooo o
! Remapping 1 | | p------J-—_____ .
T Opdate T ST 1 ————— I Apply to Ul !
i opea T 1] Material '
1 Relative | 1 180° VA
R S B R I IR
! Camera ' Rotation 1 | Stereoscene
i _Rotation_ | *---------- I ___Sapture____1
Orientation Display
Unreal Engine

Figure 11: Unreal Engine implementation for
barebones VR HMD using the Arduino Teensy and
MPU-9250 IMU for orientation and an HDMI
display for viewing.

Latency between head motion and scene response
is ~15ms tied to the in-game tick speed. Large
discrepancies are likely tied to computer hardware
and the demand of Unreal rather than the connection
between the HMD and our designed blueprint.
Lighting and physics are generated in real-time,
placing a heavy load on the computer. Pre-baking
some lighting, and further optimizing geometry
would improve the latency.

Implementation through blueprints allowed clean
modularity, enabling easy edits for future versions of
the project.

5. Results

5.1 Qualitative

Users reported a sense of immersion and eerie
feeling in the triggered elevator sequence. Head
movement mapped reliably to in-scene camera
control, allowing users to look around and navigate
naturally with WASD keys. Some motion sickness at
rapid turns were reported.

Some visual issues still occur with the stereo
view. Unreal Engine overrides our current custom
StereoSceneCapture class with their general
SceneCapture2D object which leads to an imperfect
implementation of the asymmetric frustum, which
would be more noticeable in headsets with larger
fields of view.

5.2 Quantitative
Serial Communication

At the time of submission, with an RTX 3080 and
AMD Ryzen 9 5900, the project runs at an average
of 72 FPS using 3 GB of system memory. The serial

input updates at a baud rate of 115200 and a read
frequency of ~60Hz based on a 0.017s game tick.
This frequency can be increased by increasing the
number of updates per game tick. However, varying
the number of updates per in-game tick from 1 to 20
had no impact on perceived smoothness.

In an 8 minute stress test, after extensive usage of
the VRduino, 12 out of 28800 packets were dropped
in serial communication. Most packet drops occurred
when interacting with multiple physics objects at
once while moving the VRduino erratically.

Metric Value

Average FPS 72
Update Rate ~ 60 Hz
Packet Drop Rate 0.04%

Table 2: Summary of Unreal Engine Quantitative
performance during HMD demonstration.

Tracking and Orientation

To test the stability of the compensated IMU
measurements from the Teensy, we ran a 10 minute
drift measurement, calculating orientation every 5
seconds. Across two 10 minute measurements, the
maximum drift across all axes was 0.0001 units per
minute with a maximum variation of 0.001 units per
minute, as plotted in Fig. 12.

00090

w
otss
-
E 0 2 4 6 8 10
-‘é 02
S X
> w
E}
S w
c
k=l 0 2 4 6 8 10
£ om0
]
©
8 00625
a6
0 2 4 6 8 10
10 z
0ss
0 2 4 6 8 10

Time (min)

Figure 12: Map of quaternion drift and variation
across 10 minutes.

6. Discussion

For the time and resources given, we would
consider our demonstration successful. In two weeks
with limited prior experience we are satisfied with the
progress we have achieved in adapting Unreal Engine
for custom VR HMDs. While we experienced
challenges in HMD implementation, with slight
inaccuracies inducing motion sickness, and Unreal
Engine overwriting the asymmetric capture with it’s

own symmetric scene capture, we have achieved
reliable 3-axis orientation tracking and in-game
alignment for both the camera and player character
using an Arduino and digital IMU, and updating a
stereoscopic display with no VR drivers.
Additionally, we have implemented an immersive
experience which participants described as eerie
during informal testing, despite challenges with
texture compatibility between Blender and Unreal
Engine. However, several limitations remain, as
discussed in 6.1, and we have several goals for future
work to innovate on this idea, as discussed in 6.2.

6.1 Limitations

- Over time, the Arduino must be reset due to drift
and struggles in long-term accuracy.

- Unreal engine requires fully packaged textures,
which cannot be imported directly from blender.
Objects still need to be textured within Unreal
Engine.

- Due to the stereo rendering implemented as image
renders as well as a low framerate, some
participants reported motion sickness.

- While our final code can maintain proper
orientation tracking for over an hour, we cannot
reset orientation to a new reference without
adjusting the rotation axes.

6.2 Future Work

Given our time and hardware limitations, our
proof of concept remains limited to hardware that
matches the behavior of our current implementation.
With the current code, Unreal Engine requires a
Windows computer and knowledge of which serial
port the Arduino Teensy is connected to. HMD
orientation is also hardcoded to match our headset
implementation. In future work, we aim to make the
Unreal Engine implementation more generally
applicable, more efficient, and more easily
implementable. This includes:

- Reworking the serial communication to find and
communicate with arbitrary MCU in Windows,
Mac and Linux.

- Allowing remapping of orientation to match
alternate IMU configurations.

- Expanding to 6-DoF with positional tracking and
allowing full developer control over functionality.

- Using a higher-precision IMU or sensor fusion
algorithm.

- Adding direct player interaction with the scene via
handheld controllers.

- Releasing this HMD integration as an Unreal
plugin for open-source use.

7. Conclusion

In this work, we implemented a functional VR
headset pipeline in Unreal Engine using low-cost,
open source hardware for a head-mounted display
and 3-DoF orientation tracking. Our implementation
leverages quaternion data from an Arduino-based
IMU, serial streaming, and stereo rendering with
distortion correction to port immersive environments
to VR.. We demonstrated this through an interactive
experience in a custom made office environment
inspired by Severance. By overcoming Unreal
Engine’s limited support for custom hardware, we
create a potential path forward for open-source,
hardware-agnostic = HMD development. Future
extensions include generalizing for 6-DoF tracking
and controller integration.

References

[1] “Virtual Reality Market Share & Trends Report,
2021-2028,” Grand View Research,
https://www.grandviewresearch.com/industry-analysi
s/virtual-reality-vr-market#

[2] Severance, Apple TV+, 2022.
https://tv.apple.com/us/show/severance/umc.cmc. 1srk
2goyh2q2zdxcx605w8vtx

[3] “OpenXR” The Khronos Group, Dec. 06, 2016.
https://www.khronos.org/openxr/

[4] R. M. D. Oca, “Serial Communication Plugin for
Unreal Engine,” GitHub, Nov. 29, 2022.
https://github.com/videofeedback/Unreal Engine Ser
ialCOM_Plugin

[5] G. Wetzstein, Virtual Reality, Lecture 7: Head
Mounted Display Optics 1. EE267 , Stanford
University, Stanford CA, April 22, 2025.
https://stanford.edu/class/ee267/lectures/lecture.pdf
[6] R. Workshop, Lumon Office - Severance TV
Show. Unreal Engine Model, Fab, October 4, 2024.
https:/www.fab.com/listings/4f83bdd4-d2b9-4b71-8b
17-648¢27204cc8

[7] T. Shapiro, “Main Titles,” Severance: Season 1
(Apple TV+ Original Series Soundtrack), Endeavor
Content, Feb. 18, 2022. [Online]. Available:
https://theodoreshapiro.bandcamp.com/album/severa

nce-season-1-apple-tv-original-series-soundtrack

Acknowledgements

Thank you to Manu Gopakumar and Prof. Gordon
Wetzstein for support on this project and in this class.
This project includes code from EE267 Homework 5
VRduino solution and sound effects from Severance.

http://www.fab.com/listings/4f83bdd4-d2b9-4b71-8b17-648c27204cc8
http://www.fab.com/listings/4f83bdd4-d2b9-4b71-8b17-648c27204cc8
https://theodoreshapiro.bandcamp.com/album/severance-season-1-apple-tv-original-series-soundtrack
https://theodoreshapiro.bandcamp.com/album/severance-season-1-apple-tv-original-series-soundtrack
https://theodoreshapiro.bandcamp.com/album/severance-season-1-apple-tv-original-series-soundtrack

	1.​ Introduction
	2.​Related Work
	2.1. Tracking and Orientation
	2.2. Development Environments
	2.3. HMD Implementation

	3.​Method
	3.1. Hardware and Serial Streaming
	3.2. Unreal Engine Serial Integration
	3.3. Unreal Engine HMD Output
	3.4. Scene Design and Interaction

	4.​Analysis & Evaluation
	5.​Results
	5.1 Qualitative
	5.2 Quantitative

	6.​Discussion
	6.1 Limitations
	6.2 Future Work

	7.​Conclusion
	References
	Acknowledgements

