
Crow Hunt: A First-Person Shooter VR Game

Tate DeWeese
Stanford University

tdeweese@stanford.edu

Kairen Ye
Stanford University

kairenye@stanford.edu

1. Introduction
Our project is a virtual reality crow hunt game imple-

mented in Unity. It is a first-person shooting game and uti-
lizes the course’s provided head-mounted display (HMD)
and the VRduino board. The game was partially motivated
by the Duck Hunt arcade game from Nintendo, where a user
stands in a stationary location and shoots ducks that appear
on the screen without hitting the dogs. Our game imple-
ments a similar 3D version, but with flying crows and car-
dinal birds. Similarly, in our game, the player should target
crows without hitting cardinal birds. The player aims by
turning his or her head and fires shots using keyboard con-
trols.

2. Setup and Equipment
2.1. Orientation Tracking and Optimizations

Our game relies on orientation tracking so that the player
can aim by rotating his head. Orientation tracking is
achieved with the VRduino’s on-board accelerometer and
gyroscope. We used our own code implemented in home-
work 5, which only performs orientation-tracking related
computations and not pose-tracking ones. This decreased
the time to compute and stream the rotation quaternions.
However, even with the homework code, we still observed
a poor head rotation update rate within Unity. Knowing that
the provided ReadUSB.cs script only reads the QC tag
from the serial print, we removed all other unrelated print
and function calls in vrduino.ino file, significantly im-
proving the head rotation update rate in Unity.

2.2. Game Engine and Stereo Rendering SDK

We developed our game under Unity Version 2019.3.0a4
in MacOS with a Personal license. For stereo rendering,
we used the Stereo Rendering SDK provided by the course
staff, which is based off of the Google Cardboard SDK and
adapted for the screen installed in the ViewMaster. With
this setup, the game is run in Play mode within the Unity
editor.

2.3. Input and Output Devices

The LCD screen serves as an external display to the PC
and displays the maximized Unity “Game” window when
the game is running. The external screen and the PC have

Figure 1: Stereo rendering of the Crow Hunt game in Unity
editor’s Play mode. A cardinal bird appears in the player’s
field of view. The time left in the game and the green +1 hit
indicator are also shown.

to be connected via HDMI. The VRduino board needs to be
plugged into the PC via USB so that the quaternion updates
could be streamed over serial. The keyboard on the PC is
also used in our game for firing shots.

3. Game Design

3.1. In-Game World

To make our in-game world realistic, we used an outdoor
nature scene powered by the Nature Starter Kit 2 Unity as-
set. We removed all tree objects in the scene to make an
open space for the player. We also used the terrain colliders
so the bird objects wouldn’t vanish into the ground.

3.2. Bird Objects

In the game, birds spawn randomly and have random
fly paths. We use the Living Birds Unity asset and utilize
its livingBirdsController prefab to achieve this ef-
fect. We tested the controller and set the ideal number of
birds parameter to 20, an unspawn distance to 40, and a
bird scale of 20 for best visual experience. Two types of
birds are used in our game: crows and cardinals. We also
dispersed a total of 21 groundTarget around the player
(see Fig. 2). The groundTarget attract birds and there-
fore help keep the birds around the user for better in-game
experience.

1



Figure 2: Bird’s-eye view of the 21 groundTarget ob-
jects dispersed around the player to attract the birds. The
Mesh Renderers have been turned on for readers to see these
objects, but the player won’t see them with the Mesh Ren-
derers off.

3.3. Player Viewmodel

Two objects appear in the player’s viewmodel: a shot-
gun and a 3D crosshair. They are powered by the Hand
Painted Shotgun asset and the Simple Modern Crosshairs:
Pack 1 asset, respectively. We attached the shotgun model
and the crosshair model under CardboardMain’s Main
Camera. We fine-tuned the transform positions of these
objects for best visual experience.

3.4. Player UI

The player’s UI has three components: Time Left, Score,
and Hit Indicator. These UI components are inserted as
3D Text objects and attached to CardboardMain’s Main
Camera. Again, we fine-tuned the transform positions of
these 3D texts for optimal visual experience. We wrote
scripts for all three UI components to keep them updated in
the game. The Time Left and Score indicators are managed
by the Timer.cs script. The Hit Indicator shows a green
+1 on the screen if the player hits a crow and a red -1 if the
player hits a cardinal. The Hit Indicator’s fade-out behav-
ior is managed by the HitFade.cs script, which decre-
ments the text’s alpha value over time. The scores and the
hit indicator’s texts are updated upon hitting a bird, which
is implemented in the KillBird.cs script.

3.5. Bullet Firing and Hit Detection

The gun model has a Shell and a ShellTransform
attached to it. The ShellTransform is not a concrete
object in the scene, but simply tracks the shell’s current
position and rotation. Whenever the player fires a bullet
by pressing down space bar on the keyboard, the script
StartShot.cs instantiates a new Shell object as a
rigid body with the ShellTransform’s position and ro-
tation. The new shell instance is then infused with an im-

Figure 3: You may adjust the Time Left field (in sec-
onds) in Unity editor to adjust the length of the game. The
default value is 60 seconds.

pulse force with an impulse parameter of 10, which we
tuned for visually optimal bullet travel speed. Whenever
the bullet collides with an object, the KillBird.cs script
checks whether the other Collider object’s name be-
longs to a crow or a cardinal. If so, the hit indicator and the
score are updated accordingly. A shell object is destroyed
upon hitting a bird or hitting the ground. Note that if game
is over, these updates are not triggered any more.

3.6. Sound Effects

The game has two sound effects: one upon firing a shot
and one upon hitting a bird. The gunfire sound is powered
by the Post Apocalypse Guns Demo asset, and the damage
sound is powered by the 8bit SFX 01 - Shooting Game (Lite)
asset. The gunfire sound is triggered in StartShot.cs,
and the damage sound is triggered in KillBird.cs.

4. Controls and Gameplay
4.1. Starting the Game

The game is started by clicking the Play button in Unity
editor. The Time Left indicator will start counting down
from 60 seconds (adjustable as seen in Fig. 3). After you
start the game, the birds will start spawning, and it may take
a few seconds before you can see any birds around you.
Your score is initialized to 0 at the beginning of the game.

4.2. Playing the Game

Rotate your head to find birds around you. When you
see a crow, use the crosshair to help with aim. Press the
keyboard’s space bar to fire a shot. Hitting a crow would
add 1 point to your score. Hitting a cardinal would deduct
1 point from your score. Your score is tracked in the back-
ground and will be displayed once the game is over.

4.3. End of Game

Once the “Time Left” counter reaches 0, the game is
over, and the “Time Left” text on the player UI will be re-
placed with “Game Over” text. Then, your final score is
displayed. After game is over, while you can still fire shots,
birds hit will not die or disappear. You can restart the game
by ending and restarting the Play mode in Unity editor.


	. Introduction
	. Setup and Equipment
	. Orientation Tracking and Optimizations
	. Game Engine and Stereo Rendering SDK
	. Input and Output Devices

	. Game Design
	. In-Game World
	. Bird Objects
	. Player Viewmodel
	. Player UI
	. Bullet Firing and Hit Detection
	. Sound Effects

	. Controls and Gameplay
	. Starting the Game
	. Playing the Game
	. End of Game


