VR Racing Game

Sophia Chen
Stanford University

schenlO@stanford.edu

Abstract

This report describes a Unity virtual reality driving game
with two cars. One is controlled by a first-person user and
the other is controlled by an automated program. The user
can look around the scene and drive using either the arrow
keys or a VRduino steering wheel.

1. Introduction

The purpose of this paper is to describe a virtual real-
ity car racing game designed in Unity for use on a head-
mounted display (HMD), with optional VRduino inputs.
The goal of the game is to complete a lap and set the best
time. The game was designed with help from Jimmy Ve-
gas’s Unity tutorial [1]. We read inputs from the VRduino
by modifying scripts from the sample project [2], and used
them to control the head orientation and driving controls.
To make things harder, an autonomous car is also racing.

2. Using the Game

The game begins with a countdown at the starting line.
If head orientation tracking is enabled, the car may not be
directly in the field of view depending on the position the
head orientation VRduino is initialized and potential drift
from bias over time. You may need to turn around to find
it. For an example of what the scene should look like, see
Figure 1. The object of the game is to drive a full loop of
the track in the car. The faster the better!

2.1. View rotation

The program simulates a driving experience by match-
ing camera movement to car and head movement in a nat-
ural way. The “forward” direction tracks the car’s forward
direction, but with view tracking enabled, the user can look
around the scene as though they are sitting on the car. This
allows the player to remain comfortably oriented while the
car drives on uneven terrain.

Suzannah Osekowsky
Stanford University

sosekows@stanford.edu

2.2. Driving
[Action VRduino | Arrow Keys |
Turn Left Turn CCW —
Turn Right Turn CW —
Accelerate Forward Tip Forward T
Accelerate Backward | Tip Backward +

Table 1: Driving controls in each mode

The car can be controlled in two ways according to
player preference or computational availability. The com-
mands are summarized in Table 1. In VRduino driving
mode, the VRduino controller behaves as a steering wheel.
In computer driving mode, the arrow keys behave as one
would expect.

2.3. Restarting the Game

Once you reach the end of the lap, the game will end
and there will be a celebratory cut scene! If you beat the
best time, the best time will be updated with your time. To
restart the game, press the 'R’ key.

3. How it Works
3.1. Camera Movement

There are two important contributors to natural camera
movement: translation with the car and rotation with the
player’s head.

3.1.1 Translation: Cube Tracking

The main camera rotates with the car’s yaw rotation. How-
ever, the main camera does not rotate in the pitch or roll
direction with the car. This is in order to maintain steadi-
ness in the case where the user hits a wall and the car flips
over. In that case, the camera should remain steady, and the
user will only see the car flip over instead of flipping with
the car. This is done by tracking a cube that sits on top of
the car, and only rotates around the yaw axis.

(a) Normal view of the game

(b) Stereo rendering for VR headset.

Figure 1: The starting line. Your opponent is usually faster than you.

3.1.2 Rotation: VRduino Tracking

The camera uses the rotation quaternion from the VR-
duino’s serial port as defined in ReadUSB2.cs. However,
if we used this rotation quaternion alone, it would track the
car’s location but its default “forward” direction would not
rotate with the car. We therefore combined the Euler angles
from the car quaternion and the VRduino quaternion to pro-
duce the camera quaternion. This causes the view to rotate
when the car turns, following the driving naturally.

3.2. Driving

In VRduino driving mode, we collect the steering VR-
duino quaternion from the serial port. We then back-
calculate the Euler pitch and roll and use these angles as
inputs to the native Unity driving behavior. As the Euler an-
gles using the Unity command quaternion.eulerAngles are
given in the range [0, 27|, we performed this calculation
ourselves so we would have the desired range of [—, 7.

4. Changing Modes

Playing the game with both visual VRduino control and
VRduino steering can be laggy, so here are instructions for
changing between options and experimenting with behav-
iors.

4.1. Head Tracking

To activate/deactivate orientation tracking, select the
Camera object in the RaceArea scene. It has a few parents
in its hierarchy, so use the image shown below to find it.
Then, go to the Inspector window, scroll all the way down,
and check/uncheck ReadUSB2 (as shown in Figure 2).

4.2. Car Movement

To switch between the two input methods (arrow keys
and VRduino), select the “Car” child of the “Player” ob-

v € RaceArea

¥ Player © Inspector al
vcar

» Colliders Rty X0 C 'zjo |
» WheelsHubs Scale x[1 J¥[2]z[1]
ek v « [JRead USB2 (Script) @ =
» Particles ea il Lo
» SkyCar Seript ReadUSBZ @
» Helpers Car Rotation [wCar] o
» FinishCube
e [Add Component l

(a) Camera (b) Check “ReadUSB2” to activate head tracking.
parentage

Figure 2: Controlling head tracking

ject of the RaceArea scene. Then, go to the Inspector win-
dow and scroll down until you see the attached scripts. The
configuration shown here allows you to navigate using the
arrow keys as input. If you would like to drive with the VR-
duino, uncheck “Car User Control” and check “Read USB”
(Figure 3).

@ Inspector

Brake Torgue |20000

»
R

» « [+ Car User Control (Script)
» o [Car Audio (Script)
¥ = [_|Read USB (Script)
Script ReadUSB

B
SL|&L|EL
IE-2E-JK -3

B

[Add Component] [

Figure 3: Check “ReadUSB” to activate VRduino steering.
Check “Car User Control” to activate arrow key steering.
For whichever one you select, you must unselect the other.

References

[1] J. Vegas, “How to make a driving racing game in
unity.” Youtube. https://www.youtube.com/watch?
v=MQ5GJP1AGS4, March 2017.

[2] M. K. S. J. Varsha Sankar, Sagar Honnungar, “Vrduino fruit
ninja,” 2018.

