Myo the Force Be With You

David Pan, Karen Yang Department of Electrical Engineering, Stanford University

Game Control

Svnc

Select

Deselect

Direction - Up/Down

Move Direction

Methods

Arm Model

- Arm orientation computed using Myo armband quaternion
- Used typical arm/hand dimensions
- Used typical shoulder position as the center of rotation

Force Model

Variable	Description
z	Arm position
ż _θ	Arm direction
×	Object position
у	Desired object position
F _r	Radial force
F _θ	"Angular" force
F _d	Damping force

Force Diagram

Physics Equations

Spring-Mass-Damper Model

Push & Pull Gestures

Linear Acceleration on 7-axis

- Remove gravity using quaternion $a = (\mathbf{Q} * \mathbf{a_s} - \mathbf{g}) \cdot \hat{\mathbf{z}}_{\theta}$
- Peak-detection algorithm

Future Work

- Position Tracking
- More EMG Integration
- EEG (Brain Signals)

References

- stanford.edu/class/ee267/
- myo.com
- unity3d.com
- en.wikipedia.org/wiki/Damping

Acknowledgements

Special thanks to Master Gordon Wetzstein, Master Robert Konrad, other staff in Stanford EE Department and all parties that supported EE 267.