VirtualWars: An Immersive VR Experience

Motivation

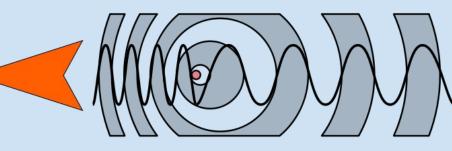
"VR is not an engineering problem. It's a perceptual problem with an engineering solution." Aaron Nicholls, Oculus

Our motivation behind this project was to hack the human perceptual system to the point that it cannot perceive a difference between the virtual and physical world. To provide this fully immersive experience is often unintuitive, so we set out to find the key factors.

Unlike traditional screen media, VR is a meant to be a fully immersive experience. However, there are several aspects of the virtual world that are limited: Field of View, latency, the graphics pipeline, haptics, position tracking and more. We needed to get around these limitations without alerting human senses to the mismatch. Our focus was on four major components: Content, Audio & Lighting, Animations and Sensors.

Content

• Custom modelled most of the scene in Blender and Unity to have a coherent experience




```
Cunity Joblender Audacity
```


- Took advantage of rendering techniques such as bump and normal maps to make the geometry look more realistic
- Used shaders and particle systems in Unity to make realistic looking effects like rain or the destruct
- Increased physical interaction to mask the inaccurate aspects of VR: for instance, positional freedom gives the user less reason to look peripherally into the limited field of view

Audio & Lighting

Demonstration of Doppler effect • Added lots of background noises such as rain, passing ships, explosions to make the scene sound more natural • Incorporated lighting changes coupled with audio to increase immersion, e.g. thunder and lightning occur in sync • Used a combination of hard and soft shadows to increase realism while keeping the rendering loop efficient

Fahim Dalvi fdalvi@stanford.edu

Tariq Patanam tpatanam@stanford.edu

Results & Future Work

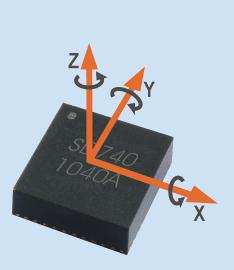
How we did it?

We encountered several key obstacles in our implementation of the immersive experience.

Obstacle	Workaround	Possible Improvement
Network latency in transferring sensor data	Streamed data through USB	Use low latency networks such as bluetooth or interpolate data from faster but unreliable datastreams
Limited position tracking	Platform in virtual world equally constrained	Use bluetooth, WiFi, magnetic or other indoor tracking technologies
Haptic limitations	Made objects such as droids very low density so they seem to cut easily in the virtual world	Use vibration feedback on impact

• Sound is a crucial factor in making a VR experience more immersive

• Incorporated stereo sound to give the user spatial cues and simulate real world phenomena like the Doppler effect


Animations

- Realistic physical movement is key to making things look natural
- Used Blender to rig and animate our models

Rigged Droid model

- Used inverse kinematics built into Blender for realistic pose manipulation
- Used animation curves in Unity to incorporate macro animations at the world level, e.g. droids approaching the player
- Also incorporated animations using scripts for finer control, e.g. shooting bullets from the ships at randomized intervals

We use an IMU integrated with a gyroscope and an accelerometer to perform tracking

Sensors

- Bridging the gap between the vestibular and the visual system is an important aspect of a good VR experience
- Used Inertial Measurement Unit (IMU) to perform head tracking
- Used IMU to perform hand orientation tracking to control the lightsaber in the virtual world
- Used Kinect to perform position tracking of the user's body

Kinect 360 Uses an RGB camera and infrared projection based depth sensor to track objects in its view