EE263: Introduction to Linear Dynamical Systems
Review Session 8

• Symmetric matrices

• Matrix inequalities

• SVD
Symmetric matrices

In the following problems you can assume that $A = A^T \in \mathbb{R}^{n \times n}$ and $B = B^T \in \mathbb{R}^{n \times n}$. We do not, however, assume that A or B is positive semidefinite. For $X = X^T \in \mathbb{R}^{n \times n}$, $\lambda_i(X)$ will denote its ith eigenvalue, sorted so $\lambda_1(X) \geq \lambda_2(X) \geq \cdots \geq \lambda_n(X)$.
Example: Similarity transformation

Is this true or false?

Suppose there is an orthogonal matrix R such that $A = R^T BR$. Then the eigenvalues of A and B are the same, i.e., $\lambda_i(A) = \lambda_i(B)$ for $i = 1, \ldots, n$.

Solution. True.

- since A is symmetric we can write $A = Q\Lambda Q^T$, where Λ is diagonal and Q is orthogonal
- but $A = R^T BR = Q\Lambda Q^T$ implies $B = R(Q\Lambda Q^T)R^T$
- thus, $B = (RQ)\Lambda(RQ)^T$ where RQ is orthogonal
Example: Ellipsoid containment

Is this true or false?

If \(\{ x \mid x^T A x \leq 1 \} \subseteq \{ x \mid x^T B x \leq 1 \} \), then \(A \geq B \).

Solution. False.

• we know the statement is true when \(B > 0 \) from lecture 15-18

• consider the case where \(B \) is a negative definite matrix, the set \(\{ x \mid x^T B x \leq 1 \} \) is equal to \(\mathbb{R}^n \)

• the set \(\{ x \mid x^T A x \leq 1 \} \) is clearly a subset of \(\mathbb{R}^n \), regardless of what \(A \) is

• \(A \) can be such that \(A < B \); e.g., the scalar case \(A = -2, B = -1 \)
Example

Let $A \in \mathbb{R}^{n\times n}$ and $B \in \mathbb{R}^{n\times n}$ both be symmetric and positive definite. What can you say about the eigenvalues of AB?

Solution.

- We can choose $A^{1/2}$, and $A^{-1/2}$ so that $A^{1/2}A^{1/2} = A$, and $A^{1/2}A^{-1/2} = I$.

- The eigenvalues of AB are the same as the eigenvalues of $A^{-1/2}ABA^{1/2} = A^{1/2}BA^{1/2}$.

- The matrix $A^{1/2}BA^{1/2}$ is symmetric and positive definite, which implies that the eigenvalues of AB are real and positive.
Example: Matrix exponential

Is this true or false?

If $A \geq B$ then for all $t \geq 0$, $e^{At} \geq e^{Bt}$.

Solution. False.

• consider

\[
A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad B = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}.
\]

• eigenvalues of $A - B$ are 0 and 2, so $A - B \geq 0$

• eigenvalues of $e^A - e^B$ are 4.2983 and −0.2656, which means e^A and e^B are not comparable

• this is one of those tricky things that is true for scalars, but false for matrices
SVD Fundamentals

• Let $A \in \mathbb{R}^{m \times n}$, $A = U\Sigma V^T = \sum_{i} \sigma_i u_i v_i^T$ is the singular value decomposition of A.

• $S = \{x \in \mathbb{R}^n : \|x\| \leq 1\}$ is the unit ball (ellipsoid) in \mathbb{R}^n,

• $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is given by the linear mapping $f(x) = Ax$

• $f(x)$ maps the unit ball $S \subseteq \mathbb{R}^n$ to an ellipsoid in \mathbb{R}^m
SVD Fundamentals

- Right singular vectors v_i are mapped to left singular vectors u_i.
- Semiaxis lengths given by σ_i.

\[x \mapsto Ax \]
SVD Properties

• $A = U\Sigma V^T$, where U, V are orthogonal, Σ diagonal.

• $r = \text{rank}(A)$ is the number of nonzero singular values of A, where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$.

• $\{u_1, \ldots, u_r\}$ is an orthonormal basis for $\mathcal{R}(A)$.

• $\{v_{r+1}, \ldots, v_n\}$ is an orthonormal basis for $\mathcal{N}(A)$.

• The pseudoinverse is given by

$$A^\dagger = \hat{V} \hat{\Sigma}^{-1} \hat{U}^T,$$

from the “thin” svd, where the inverses in $\hat{\Sigma}$ are taken along the diagonal.
Testing for membership in span

• Recall that \(y \in \mathcal{R}(A) \) if \(\text{rank} \begin{bmatrix} y & A \end{bmatrix} = \text{rank}(A) \). This is a numerically unsound way to check if something is in the range.

• The component \(\hat{y} \) of \(y \) in \(\mathcal{R}(A) \) is computed by projecting \(y \) onto \(\text{span}\{u_1, \ldots, u_r\} \), i.e.,

\[
\hat{y} = \sum_{i=1}^{r} u_i u_i^T y
\]

• Thus, \(y \in \mathcal{R}(A) \) if and only if the component \(z \) of \(y \) in \(\mathcal{R}(A)^\perp \) is \(z = y - \hat{y} = 0 \).

• Note that \(z \) can be written as \(z = (I - \hat{U}\hat{U}^T)y \)

• So, \(y \in \mathcal{R}(A) \) if and only if \((I - \hat{U}\hat{U}^T)y = 0 \)
Computing SVD “by hand”

- $A = U\Sigma V^T$ means $A^T A = (U\Sigma V^T)^T(U\Sigma V^T) = V\Sigma^2 V^T$ is symmetric

- Similarly, $AA^T = U\Sigma^2 U^T$

- Thus, the singular values are the square roots of the eigenvalues of $A^T A$ or AA^T:

 \[\sigma_i = \sqrt{\lambda_i(A^T A)} = \sqrt{\lambda_i(AA^T)} \]

- Right singular vectors v_i are the eigenvectors of $A^T A$, the left singular vectors u_i are the eigenvectors of AA^T

- Much better algorithms exist!
Matrix norm

- The (induced) matrix norm of A is $\|A\| = \max_{\|x\|=1} \|Ax\|$

- Also $\|A\| = \max_{x \neq 0} \|Ax\|/\|x\| = \sigma_1(A)$

Obeys “norm” properties, like

- Scaling: $\|cA\| = |c|\|A\|$ for $c \in \mathbb{R}$

- Triangle inequality: $\|A + B\| \leq \|A\| + \|B\|$

- Definiteness: $\|A\| = 0$ if and only if $A = 0$

- Submultiplicative Identity: $\|Ax\| \leq \|A\|\|x\|$ for $x \in \mathbb{R}^n$
Example

We are given \(A \in \mathbb{R}^{m \times n} \), with \(\text{svd} \ A = U \Sigma V^T \). How can we find vectors \(x \) and \(y \) that maximize \(y^T Ax \), subject to \(\|y\| = 1, \|x\| = 1 \)?

Solution.

• We know that

\[
y^T Ax \leq \|y\| \|Ax\| \leq \|y\| \|A\| \|x\| = \|A\|.
\]

• This upper bound is achieved by \(y = u_1 \), and \(x = v_1 \), which means that

\[
\max_{\|y\|=1,\|x\|=1} y^T Ax = \|A\| = \sigma_1.
\]
Example

We are given $A \in \mathbb{R}^{m \times n}$, and $B \in \mathbb{R}^{k \times n}$. Assume that $A^T A$ is invertible. Find a nonzero vector $w \in \mathbb{R}^n$ that maximizes

$$d = \frac{w^T B^T Bw}{w^T A^T A w}.$$

Solution.

- We know how to solve the problem in the case $A^T A = I$

- Define $z = (A^T A)^{1/2} w$, so we have $w = (A^T A)^{-1/2} z$. Then we can write

$$\max_{w \neq 0} \frac{w^T B^T Bw}{w^T A^T A w} = \max_{z \neq 0} \frac{z^T (A^T A)^{-1/2} B^T B (A^T A)^{-1/2} z}{z^T z}.$$

- Thus, $d_{\text{max}} = \lambda_{\text{max}} \left((A^T A)^{-1/2} B^T B (A^T A)^{-1/2} \right)$
The value of \(z \) that maximizes the ratio is the eigenvector associated with the maximum eigenvalue above. To find the \(w \) that maximizes \(d \), we simply multiply this eigenvector by \((A^T A)^{-1/2}\).
Low rank approximations

- Let $A = U\Sigma V^T$ be the SVD of A with $r = \text{rank}(A)$.

- We want to find a matrix \hat{A}, with $\text{rank}(\hat{A}) \leq p < r$, so that $\|A - \hat{A}\|$ is minimized. (where $\| \cdot \|$ can refer to either the matrix norm, or the Frobenius norm — the solution is the same in both cases)

- The optimal rank p approximator of A is

$$\hat{A} = \sum_{i=1}^{p} \sigma_i u_i v_i^T,$$

- The optimal approximation error is $\|A - \hat{A}\| = \left\| \sum_{i=p+1}^{r} \sigma_i u_i v_i^T \right\| = \sigma_{p+1}$