Course information

Overview
Modeling
Least-squares problems
The singular-value decomposition
Course components
Course components

- lecture: Tuesday/Thursday, 3.15pm – 5.05pm (Gates B3)
Course components

- lecture: Tuesday/Thursday, 3.15pm – 5.05pm (Gates B3)
- office hours: TBA
Prerequisites

▶ necessary:
 ▶ linear algebra (as in MATH104)
 ▶ speaking vocabulary versus reading vocabulary
 ▶ The Karate Kid analogy
 ▶ differential equations and Laplace transforms (as in EE102A)
▶ not necessary (but may increase appreciation):
 ▶ control systems
 ▶ circuits and systems
 ▶ dynamics
Prerequisites

► necessary:

- linear algebra (as in MATH104)
- speaking vocabulary versus reading vocabulary
- The Karate Kid analogy
- differential equations and Laplace transforms (as in EE102A)

► not necessary (but may increase appreciation):

- control systems
- circuits and systems
- dynamics
Prerequisites

- necessary:
 - linear algebra (as in MATH104)
Prerequisites

▶ necessary:
 ▶ linear algebra (as in MATH104)
 ▶ speaking vocabulary versus reading vocabulary
Prerequisites

▶ necessary:
 ▶ linear algebra (as in MATH104)
 ▶ speaking vocabulary versus reading vocabulary
 ▶ *The Karate Kid* analogy
Prerequisites

- necessary:
 - linear algebra (as in MATH104)
 - speaking vocabulary versus reading vocabulary
 - *The Karate Kid* analogy
 - differential equations and Laplace transforms (as in EE102A)
Prerequisites

- necessary:
 - linear algebra (as in MATH104)
 - speaking vocabulary versus reading vocabulary
 - *The Karate Kid* analogy
 - differential equations and Laplace transforms (as in EE102A)
- *not* necessary (but may increase appreciation):
Prerequisites

- necessary:
 - linear algebra (as in MATH104)
 - speaking vocabulary versus reading vocabulary
 - *The Karate Kid* analogy
 - differential equations and Laplace transforms (as in EE102A)
- *not* necessary (but may increase appreciation):
 - control systems
Prerequisites

- necessary:
 - linear algebra (as in MATH104)
 - speaking vocabulary versus reading vocabulary
 - *The Karate Kid* analogy
 - differential equations and Laplace transforms (as in EE102A)
- *not* necessary (but may increase appreciation):
 - control systems
 - circuits and systems
Prerequisites

- necessary:
 - linear algebra (as in MATH104)
 - speaking vocabulary versus reading vocabulary
 - *The Karate Kid* analogy
 - differential equations and Laplace transforms (as in EE102A)
- *not* necessary (but may increase appreciation):
 - control systems
 - circuits and systems
 - dynamics
Course materials

Everything you need is on the course website.

Some additional references (not necessary):
- Linear algebra: Calafiore/El Ghaoui, Meyer, Axler
- Dynamical systems: Luenberger

A living document on the Piazza forum.

Grades (and only grades) on CourseWork.

Alex Lemon

Introduction
Course materials

▶ everything you need is on the course website
Course materials

- everything you need is on the course website
- some additional references (not necessary)
Course materials

- everything you need is on the course website
- some additional references (*not* necessary)
 - linear algebra: Calafiore/El Ghaoui, Meyer, Axler
Course materials

- everything you need is on the course website
- some additional references (*not* necessary)
 - linear algebra: Calafiore/El Ghaoui, Meyer, Axler
 - dynamical systems: Luenberger
Course materials

- everything you need is on the course website
- some additional references (not necessary)
 - linear algebra: Calafiore/El Ghaoui, Meyer, Axler
 - dynamical systems: Luenberger
- living document on the Piazza forum
Course materials

- everything you need is on the course website
- some additional references (*not* necessary)
 - linear algebra: Calafiore/El Ghaoui, Meyer, Axler
 - dynamical systems: Luenberger
- living document on the Piazza forum
- grades (and only grades) on CourseWork
Grading

- weekly problem sets: 20% (usually due on Fridays at 5pm)
- midterm exam: 30% (24-hour take-home)
- final exam: 50% (24-hour take-home)
Grading

- weekly problem sets: 20% (*usually* due on Fridays at 5pm)

- midterm exam: 30% (24-hour take-home)

- final exam: 50% (24-hour take-home)
Grading

- weekly problem sets: 20% (usually due on Fridays at 5pm)
- midterm exam: 30% (24-hour take-home)
Grading

- weekly problem sets: 20% (*usually* due on Fridays at 5pm)
- midterm exam: 30% (24-hour take-home)
- final exam: 50% (24-hour take-home)
Course information

Overview

Modeling
Least-squares problems
The singular-value decomposition
Modeling

"All models are wrong, but some are useful." – George Box

"Nothing at all takes place in the universe in which some rule of maximum or minimum does not appear." – Leonhard Euler
Modeling

- convert a practical problem into a mathematical model
Modeling

- convert a practical problem into a mathematical model
- most important and most difficult part of the course
Modeling

- convert a practical problem into a mathematical model
- most important and most difficult part of the course
- “All models are wrong, but some are useful.” – George Box
Modeling

- convert a practical problem into a mathematical model
- most important and most difficult part of the course
- “All models are wrong, but some are useful.” – George Box
- “Nothing at all takes place in the universe in which some rule of maximum or minimum does not appear.” – Leonhard Euler
Linear dynamical systems
Linear dynamical systems

- discrete-time linear dynamical system:
Linear dynamical systems

- discrete-time linear dynamical system:

\[x(t + 1) = A(t)x(t) + B(t)u(t) \]
Linear dynamical systems

- discrete-time linear dynamical system:

\[x(t + 1) = A(t)x(t) + B(t)u(t) \]
\[y(t) = C(t)x(t) + D(t)u(t) \]
Linear dynamical systems

- discrete-time linear dynamical system:

\[x(t + 1) = A(t)x(t) + B(t)u(t) \]
\[y(t) = C(t)x(t) + D(t)u(t) \]

- \(x(t) \in \mathbb{R}^n \) is the state
Linear dynamical systems

- discrete-time linear dynamical system:

$$x(t + 1) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

- $x(t) \in \mathbb{R}^n$ is the state
- $u(t) \in \mathbb{R}^p$ is the input
Linear dynamical systems

- discrete-time linear dynamical system:

\[x(t + 1) = A(t)x(t) + B(t)u(t) \]
\[y(t) = C(t)x(t) + D(t)u(t) \]

- \(x(t) \in \mathbb{R}^n \) is the state
- \(u(t) \in \mathbb{R}^p \) is the input
- \(y(t) \in \mathbb{R}^m \) is the output
Linear dynamical systems

- discrete-time linear dynamical system:

\[
\begin{align*}
 x(t + 1) &= A(t)x(t) + B(t)u(t) \\
 y(t) &= C(t)x(t) + D(t)u(t)
\end{align*}
\]

- \(x(t) \in \mathbb{R}^n\) is the state
- \(u(t) \in \mathbb{R}^p\) is the input
- \(y(t) \in \mathbb{R}^m\) is the output
- \(A(t) \in \mathbb{R}^{n \times n}\) is the dynamics matrix
Linear dynamical systems

- discrete-time linear dynamical system:

\[x(t + 1) = A(t)x(t) + B(t)u(t) \]
\[y(t) = C(t)x(t) + D(t)u(t) \]

- \(x(t) \in \mathbb{R}^n \) is the state
- \(u(t) \in \mathbb{R}^p \) is the input
- \(y(t) \in \mathbb{R}^m \) is the output
- \(A(t) \in \mathbb{R}^{n \times n} \) is the dynamics matrix
- \(B(t) \in \mathbb{R}^{n \times p} \) is the input matrix
Linear dynamical systems

- discrete-time linear dynamical system:

\[x(t + 1) = A(t)x(t) + B(t)u(t) \]
\[y(t) = C(t)x(t) + D(t)u(t) \]

- \(x(t) \in \mathbb{R}^n \) is the state
- \(u(t) \in \mathbb{R}^p \) is the input
- \(y(t) \in \mathbb{R}^m \) is the output
- \(A(t) \in \mathbb{R}^{n \times n} \) is the dynamics matrix
- \(B(t) \in \mathbb{R}^{n \times p} \) is the input matrix
- \(C(t) \in \mathbb{R}^{m \times n} \) is the measurement matrix
Linear dynamical systems

- discrete-time linear dynamical system:

\[
\begin{align*}
x(t + 1) &= A(t)x(t) + B(t)u(t) \\
y(t) &= C(t)x(t) + D(t)u(t)
\end{align*}
\]

- \(x(t) \in \mathbb{R}^n\) is the state
- \(u(t) \in \mathbb{R}^p\) is the input
- \(y(t) \in \mathbb{R}^m\) is the output
- \(A(t) \in \mathbb{R}^{n \times n}\) is the dynamics matrix
- \(B(t) \in \mathbb{R}^{n \times p}\) is the input matrix
- \(C(t) \in \mathbb{R}^{m \times n}\) is the measurement matrix
- \(D(t) \in \mathbb{R}^{m \times p}\) is the feedthrough matrix
Least-squares problems
Least-squares problems

- system identification
Least-squares problems

- system identification
- minimum-energy control
Least-squares problems

- system identification
- minimum-energy control
- linear-filter design
Least-squares problems

\[
\text{minimize } \|Ax - b\| \quad \text{subject to } Cx = d
\]

- system identification
- minimum-energy control
- linear-filter design
The singular-value decomposition: extremal-gain problems
The singular-value decomposition: extremal-gain problems

- minimum-residual subspace
The singular-value decomposition: extremal-gain problems

- minimum-residual subspace
- maximum-variance subspace
The singular-value decomposition: extremal-gain problems

- minimum-residual subspace
- maximum-variance subspace
- analysis of robustness
The singular-value decomposition: extremal-gain problems

\[
\begin{align*}
\text{minimize} & : \|Ax\| \\
\text{subject to} & : \|x\| = 1
\end{align*}
\]

- minimum-residual subspace
- maximum-variance subspace
- analysis of robustness
The singular-value decomposition: low-rank approximation
The singular-value decomposition: low-rank approximation

▶ latent-semantic indexing
The singular-value decomposition: low-rank approximation

- latent-semantic indexing
- recommendation systems
The singular-value decomposition: low-rank approximation

- latent-semantic indexing
- recommendation systems
- factor analysis
The singular-value decomposition: low-rank approximation

\[
\begin{align*}
\text{minimize} & : \| A - X \| \\
X & \in \mathbb{R}^{m \times n} \\
\text{subject to} & : \text{rank}(X) \leq r
\end{align*}
\]

- latent-semantic indexing
- recommendation systems
- factor analysis