Least-norm solutions of underdetermined equations

- least-norm solution of underdetermined equations
- minimum norm solutions via QR factorization
- derivation via Lagrange multipliers
- relation to regularized least-squares
- general norm minimization with equality constraints
we consider

\[y = Ax \]

where \(A \in \mathbb{R}^{m \times n} \) is fat \((m < n) \), i.e.,

- there are more variables than equations
- \(x \) is underspecified, i.e., many choices of \(x \) lead to the same \(y \)

we’ll assume that \(A \) is full rank \((m) \), so for each \(y \in \mathbb{R}^m \), there is a solution

set of all solutions has form

\[
\{ x \mid Ax = y \} = \{ x_p + z \mid z \in \mathcal{N}(A) \}
\]

where \(x_p \) is any (‘particular’) solution, i.e., \(Ax_p = y \)
• z characterizes available choices in solution

• solution has $\dim \mathcal{N}(A) = n - m$ ‘degrees of freedom’

• can choose z to satisfy other specs or optimize among solutions
Least-norm solution

one particular solution is

\[x_{ln} = A^T (A A^T)^{-1} y \]

\((A A^T)\) is invertible since \(A\) full rank\)

in fact, \(x_{ln}\) is the solution of \(y = Ax\) that minimizes \(\|x\|\)

\(i.e., x_{ln}\) is solution of optimization problem

\[
\begin{align*}
\text{minimize} & \quad \|x\| \\
\text{subject to} & \quad Ax = y
\end{align*}
\]

(\(\text{with variable } x \in \mathbb{R}^n\))
suppose $Ax = y$, so $A(x - x_{ln}) = 0$ and

$$
(x - x_{ln})^T x_{ln} = (x - x_{ln})^T A^T (AA^T)^{-1} y
$$

$$
= (A(x - x_{ln}))^T (AA^T)^{-1} y
$$

$$
= 0
$$

i.e., $(x - x_{ln}) \perp x_{ln}$, so

$$
\|x\|^2 = \|x_{ln} + x - x_{ln}\|^2 = \|x_{ln}\|^2 + \|x - x_{ln}\|^2 \geq \|x_{ln}\|^2
$$

i.e., x_{ln} has smallest norm of any solution
\(\mathcal{N}(A) = \{ x \mid Ax = 0 \} \)

\{ \(x \mid Ax = y \) \}

- **orthogonality condition:** \(x_{ln} \perp \mathcal{N}(A) \)

- **projection interpretation:** \(x_{ln} \) is projection of 0 on solution set \(\{ x \mid Ax = y \} \)
• $A^\dagger = A^T (AA^T)^{-1}$ is called the *pseudo-inverse* of full rank, fat A

• $A^T (AA^T)^{-1}$ is a *right inverse* of A

• $I - A^T (AA^T)^{-1} A$ gives projection onto $\mathcal{N}(A)$

cf. analogous formulas for full rank, *skinny* matrix A:

• $A^\dagger = (A^T A)^{-1} A^T$

• $(A^T A)^{-1} A^T$ is a *left inverse* of A

• $A (A^T A)^{-1} A^T$ gives projection onto $\mathcal{R}(A)$
Least-norm solution via QR factorization

find QR factorization of A^T, i.e., $A^T = QR$, with

- $Q \in \mathbb{R}^{n \times m}$, $Q^T Q = I_m$
- $R \in \mathbb{R}^{m \times m}$ upper triangular, nonsingular

then

- $x_{ln} = A^T(AA^T)^{-1}y = QR^{-T}y$
- $\|x_{ln}\| = \|R^{-T}y\|$
Derivation via Lagrange multipliers

• least-norm solution solves optimization problem

\[
\begin{align*}
\text{minimize} & \quad x^T x \\
\text{subject to} & \quad Ax = y
\end{align*}
\]

• introduce Lagrange multipliers: \(L(x, \lambda) = x^T x + \lambda^T (Ax - y) \)

• optimality conditions are

\[
\nabla_x L = 2x + A^T \lambda = 0, \quad \nabla_\lambda L = Ax - y = 0
\]

• from first condition, \(x = -A^T \lambda / 2 \)

• substitute into second to get \(\lambda = -2(AA^T)^{-1} y \)

• hence \(x = A^T (AA^T)^{-1} y \)
Example: transferring mass unit distance

- unit mass at rest subject to forces x_i for $i - 1 < t \leq i$, $i = 1, \ldots, 10$
- y_1 is position at $t = 10$, y_2 is velocity at $t = 10$
- $y = Ax$ where $A \in \mathbb{R}^{2 \times 10}$ (A is fat)
- find least norm force that transfers mass unit distance with zero final velocity, i.e., $y = (1, 0)$
Relation to regularized least-squares

• suppose \(A \in \mathbb{R}^{m \times n} \) is fat, full rank

• define \(J_1 = \| Ax - y \|^2 \), \(J_2 = \| x \|^2 \)

• least-norm solution minimizes \(J_2 \) with \(J_1 = 0 \)

• minimizer of weighted-sum objective \(J_1 + \mu J_2 = \| Ax - y \|^2 + \mu \| x \|^2 \) is

\[
x_\mu = (A^T A + \mu I)^{-1} A^T y
\]

• fact: \(x_\mu \to x_{ln} \) as \(\mu \to 0 \), i.e., regularized solution converges to least-norm solution as \(\mu \to 0 \)

• in matrix terms: as \(\mu \to 0 \),

\[
(A^T A + \mu I)^{-1} A^T \to A^T (AA^T)^{-1}
\]

(for full rank, fat \(A \))
General norm minimization with equality constraints

consider problem

\[
\begin{align*}
\text{minimize} & \quad \|Ax - b\| \\
\text{subject to} & \quad Cx = d
\end{align*}
\]

with variable \(x\)

- includes least-squares and least-norm problems as special cases

- equivalent to

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2}\|Ax - b\|^2 \\
\text{subject to} & \quad Cx = d
\end{align*}
\]

- Lagrangian is

\[
L(x, \lambda) = \frac{1}{2}\|Ax - b\|^2 + \lambda^T(Cx - d)
\]

\[
= \frac{1}{2}x^T A^T Ax - b^T Ax + (1/2)b^T b + \lambda^T Cx - \lambda^T d
\]
• optimality conditions are

\[\nabla_x L = A^T Ax - A^T b + C^T \lambda = 0, \quad \nabla_\lambda L = Cx - d = 0 \]

• write in block matrix form as

\[
\begin{bmatrix}
A^T A & C^T \\
C & 0
\end{bmatrix}
\begin{bmatrix}
x \\
\lambda
\end{bmatrix}
=
\begin{bmatrix}
A^T b \\
d
\end{bmatrix}
\]

• if the block matrix is invertible, we have

\[
\begin{bmatrix}
x \\
\lambda
\end{bmatrix}
=
\begin{bmatrix}
A^T A & C^T \\
C & 0
\end{bmatrix}^{-1}
\begin{bmatrix}
A^T b \\
d
\end{bmatrix}
\]
if $A^T A$ is invertible, we can derive a more explicit (and complicated) formula for x

- from first block equation we get

$$x = (A^T A)^{-1}(A^T b - C^T \lambda)$$

- substitute into $Cx = d$ to get

$$C(A^T A)^{-1}(A^T b - C^T \lambda) = d$$

so

$$\lambda = (C(A^T A)^{-1}C^T)^{-1} (C(A^T A)^{-1}A^T b - d)$$

- recover x from equation above (not pretty)

$$x = (A^T A)^{-1} \left(A^T b - C^T (C(A^T A)^{-1}C^T)^{-1} (C(A^T A)^{-1}A^T b - d) \right)$$