Lecture 5
Least-squares

• least-squares (approximate) solution of overdetermined equations

• projection and orthogonality principle

• least-squares estimation

• BLUE property
Overdetermined linear equations

consider \(y = Ax \) where \(A \in \mathbb{R}^{m \times n} \) is (strictly) skinny, i.e., \(m > n \)

- called *overdetermined* set of linear equations
 (more equations than unknowns)
- for most \(y \), cannot solve for \(x \)

one approach to *approximately* solve \(y = Ax \):

- define *residual* or error \(r = Ax - y \)
- find \(x = x_{ls} \) that minimizes \(||r|| \)

\(x_{ls} \) called *least-squares* (approximate) solution of \(y = Ax \)
Ax_{ls} is point in $\mathcal{R}(A)$ closest to y (Ax_{ls} is projection of y onto $\mathcal{R}(A)$)
Least-squares (approximate) solution

• assume A is full rank, skinny
• to find x_{ls}, we’ll minimize norm of residual squared,
\[
\|r\|^2 = x^T A^T Ax - 2y^T Ax + y^T y
\]
• set gradient w.r.t. x to zero:
\[
\nabla_x \|r\|^2 = 2A^T Ax - 2A^T y = 0
\]
• yields the normal equations: $A^T Ax = A^T y$
• assumptions imply $A^T A$ invertible, so we have
\[
x_{ls} = (A^T A)^{-1} A^T y
\]

… a very famous formula
• x_{1s} is linear function of y

• $x_{1s} = A^{-1}y$ if A is square

• x_{1s} solves $y = Ax_{1s}$ if $y \in \mathcal{R}(A)$

• $A^\dagger = (A^T A)^{-1}A^T$ is called the pseudo-inverse of A

• A^\dagger is a left inverse of (full rank, skinny) A:

$$A^\dagger A = (A^T A)^{-1}A^T A = I$$
Projection on $\mathcal{R}(A)$

Ax_{ls} is (by definition) the point in $\mathcal{R}(A)$ that is closest to y, i.e., it is the projection of y onto $\mathcal{R}(A)$

$$Ax_{ls} = \mathcal{P}_{\mathcal{R}(A)}(y)$$

- the projection function $\mathcal{P}_{\mathcal{R}(A)}$ is linear, and given by

$$\mathcal{P}_{\mathcal{R}(A)}(y) = Ax_{ls} = A(A^TA)^{-1}A^Ty$$

- $A(A^TA)^{-1}A^T$ is called the projection matrix (associated with $\mathcal{R}(A)$)
Orthogonality principle

optimal residual

$$r = Ax_{ls} - y = (A(A^T A)^{-1} A^T - I)y$$

is orthogonal to $\mathcal{R}(A)$:

$$\langle r, Az \rangle = y^T (A(A^T A)^{-1} A^T - I)^T A z = 0$$

for all $z \in \mathbb{R}^n$
Completion of squares

since \(r = Ax_{ls} - y \perp A(x - x_{ls}) \) for any \(x \), we have

\[
\|Ax - y\|^2 = \|(Ax_{ls} - y) + A(x - x_{ls})\|^2 \\
= \|Ax_{ls} - y\|^2 + \|A(x - x_{ls})\|^2
\]

this shows that for \(x \neq x_{ls} \), \(\|Ax - y\| > \|Ax_{ls} - y\| \)
Least-squares via QR factorization

- $A \in \mathbb{R}^{m \times n}$ skinny, full rank

- factor as $A = QR$ with $Q^T Q = I_n$, $R \in \mathbb{R}^{n \times n}$ upper triangular, invertible

- pseudo-inverse is

$$ (A^T A)^{-1} A^T = (R^T Q^T Q R)^{-1} R^T Q^T = R^{-1} Q^T $$

so $x_{ls} = R^{-1} Q^T y$

- projection on $\mathcal{R}(A)$ given by matrix

$$ A (A^T A)^{-1} A^T = A R^{-1} Q^T = Q Q^T $$
Least-squares via full QR factorization

- full QR factorization:

$$A = [Q_1 \ Q_2] \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$$

with $[Q_1 \ Q_2] \in \mathbb{R}^{m \times m}$ orthogonal, $R_1 \in \mathbb{R}^{n \times n}$ upper triangular, invertible

- multiplication by orthogonal matrix doesn’t change norm, so

$$\|Ax - y\|^2 = \left\| [Q_1 \ Q_2] \begin{bmatrix} R_1 \\ 0 \end{bmatrix} x - y \right\|^2 = \left\| [Q_1 \ Q_2]^T [Q_1 \ Q_2] \begin{bmatrix} R_1 \\ 0 \end{bmatrix} x - [Q_1 \ Q_2]^T y \right\|^2$$
\[
\begin{align*}
&= \left\| \begin{bmatrix} R_1 x - Q_1^T y \\ -Q_2^T y \end{bmatrix} \right\|^2 \\
&= \| R_1 x - Q_1^T y \|^2 + \| Q_2^T y \|^2
\end{align*}
\]

• this is evidently minimized by choice \(x_{1s} = R_1^{-1} Q_1^T y \)
 (which makes first term zero)

• residual with optimal \(x \) is

\[
A x_{1s} - y = -Q_2 Q_2^T y
\]

• \(Q_1 Q_1^T \) gives projection onto \(\mathcal{R}(A) \)

• \(Q_2 Q_2^T \) gives projection onto \(\mathcal{R}(A)^\perp \)
Least-squares estimation

many applications in inversion, estimation, and reconstruction problems have form

\[y = Ax + v \]

- \(x \) is what we want to estimate or reconstruct
- \(y \) is our sensor measurement(s)
- \(v \) is an unknown noise or measurement error (assumed small)
- \(i \)th row of \(A \) characterizes \(i \)th sensor
least-squares estimation: choose as estimate \hat{x} that minimizes

$$\| A\hat{x} - y \|$$

i.e., deviation between

- what we actually observed (y), and
- what we would observe if $x = \hat{x}$, and there were no noise ($v = 0$)

least-squares estimate is just $\hat{x} = (A^T A)^{-1} A^T y$
BLUE property

linear measurement with noise:

\[y = Ax + v \]

with \(A \) full rank, skinny

consider a linear estimator of form \(\hat{x} = By \)

- called unbiased if \(\hat{x} = x \) whenever \(v = 0 \)
 \((i.e., \ no \ estimation \ error \ when \ there \ is \ no \ noise)\)

 same as \(BA = I \), \(i.e., \ B \) is left inverse of \(A \)
• estimation error of unbiased linear estimator is

\[x - \hat{x} = x - B(Ax + v) = -Bv \]

obviously, then, we’d like \(B \) ‘small’ (and \(BA = I \))

• **fact:** \(A^\dagger = (A^T A)^{-1} A^T \) is the *smallest* left inverse of \(A \), in the following sense:

for any \(B \) with \(BA = I \), we have

\[\sum_{i,j} B_{ij}^2 \geq \sum_{i,j} A_{ij}^\dagger^2 \]

\(i.e., \) least-squares provides the *best linear unbiased estimator* (BLUE)
navigation using range measurements from *distant* beacons

beacons far from unknown position $x \in \mathbb{R}^2$, so linearization around $x = 0$ (say) nearly exact
ranges $y \in \mathbb{R}^4$ measured, with measurement noise v:

$$y = -\begin{bmatrix} k_1^T \\ k_2^T \\ k_3^T \\ k_4^T \end{bmatrix} x + v$$

where k_i is unit vector from 0 to beacon i

measurement errors are independent, Gaussian, with standard deviation σ (details not important)

problem: estimate $x \in \mathbb{R}^2$, given $y \in \mathbb{R}^4$

(roughly speaking, a 2:1 measurement redundancy ratio)

actual position is $x = (5.59, 10.58)$;
measurement is $y = (-11.95, -2.84, -9.81, 2.81)$
Just enough measurements method

\[y_1 \text{ and } y_2 \text{ suffice to find } x \text{ (when } v = 0) \]

compute estimate \(\hat{x} \) by inverting top (2 \(\times \) 2) half of \(A \):

\[
\hat{x} = B_{je}y = \begin{bmatrix}
0 & -1.0 & 0 & 0 \\
-1.12 & 0.5 & 0 & 0
\end{bmatrix} y = \begin{bmatrix}
2.84 \\
11.9
\end{bmatrix}
\]

(norm of error: 3.07)
compute estimate \hat{x} by least-squares:

$$\hat{x} = A^\dagger y = \begin{bmatrix} -0.23 & -0.48 & 0.04 & 0.44 \\ -0.47 & -0.02 & -0.51 & -0.18 \end{bmatrix} y = \begin{bmatrix} 4.95 \\ 10.26 \end{bmatrix}$$

(norm of error: 0.72)

• B_{je} and A^\dagger are both left inverses of A

• larger entries in B lead to larger estimation error
Example from overview lecture

\[u \xrightarrow{H(s)} w \xrightarrow{A/D} y \]

- signal \(u \) is piecewise constant, period 1 sec, \(0 \leq t \leq 10 \):
 \[
u(t) = x_j, \quad j - 1 \leq t < j, \quad j = 1, \ldots, 10\]

- filtered by system with impulse response \(h(t) \):
 \[
w(t) = \int_{0}^{t} h(t - \tau) u(\tau) \, d\tau\]

- sample at 10Hz: \(\tilde{y}_i = w(0.1i), \quad i = 1, \ldots, 100 \)
• 3-bit quantization: \(y_i = Q(\tilde{y}_i) \), \(i = 1, \ldots, 100 \), where \(Q \) is 3-bit quantizer characteristic

\[
Q(a) = \frac{1}{4} \left(\text{round}(4a + 1/2) - 1/2 \right)
\]

• **problem:** estimate \(x \in \mathbb{R}^{10} \) given \(y \in \mathbb{R}^{100} \)

example:
we have \(y = Ax + v \), where

- \(A \in \mathbb{R}^{100 \times 10} \) is given by \(A_{ij} = \int_{j-1}^{j} h(0.1i - \tau) \, d\tau \)

- \(v \in \mathbb{R}^{100} \) is quantization error: \(v_i = Q(\tilde{y}_i) - \tilde{y}_i \) (so \(|v_i| \leq 0.125 \))

least-squares estimate: \(x_{ls} = (A^T A)^{-1} A^T y \)
RMS error is \[
\frac{\|x - x_{1s}\|}{\sqrt{10}} = 0.03
\]

better than if we had no filtering! (RMS error 0.07)

more on this later . . .
some rows of \(B_{1s} = (A^T A)^{-1} A^T \):

- rows show how sampled measurements of \(y \) are used to form estimate of \(x_i \) for \(i = 2, 5, 8 \)
- to estimate \(x_5 \), which is the original input signal for \(4 \leq t < 5 \), we mostly use \(y(t) \) for \(3 \leq t \leq 7 \)