Lecture 7
Regularized least-squares and Gauss-Newton method

- multi-objective least-squares
- regularized least-squares
- nonlinear least-squares
- Gauss-Newton method
Multi-objective least-squares

in many problems we have two (or more) objectives

• we want $J_1 = \|Ax - y\|^2$ small

• and also $J_2 = \|Fx - g\|^2$ small

($x \in \mathbb{R}^n$ is the variable)

• usually the objectives are competing

• we can make one smaller, at the expense of making the other larger

common example: $F = I, g = 0$; we want $\|Ax - y\|$ small, with small x
Plot of achievable objective pairs

plot \((J_2, J_1)\) for every \(x\):

\[
\begin{align*}
J_1 & \quad\quad\quad\quad J_2 \\
\bullet x^{(1)} & \quad\quad\quad\quad \bullet x^{(2)} \\
\bullet x^{(3)} & \\
\end{align*}
\]

note that \(x \in \mathbb{R}^n\), but this plot is in \(\mathbb{R}^2\); point labeled \(x^{(1)}\) is really
\((J_2(x^{(1)}), J_1(x^{(1)}))\)
• shaded area shows \((J_2, J_1)\) achieved by some \(x \in \mathbb{R}^n\)

• clear area shows \((J_2, J_1)\) not achieved by any \(x \in \mathbb{R}^n\)

• boundary of region is called optimal trade-off curve

• corresponding \(x\) are called Pareto optimal
 (for the two objectives \(\|Ax - y\|^2, \|Fx - g\|^2\))

three example choices of \(x\): \(x^{(1)}, x^{(2)}, x^{(3)}\)

• \(x^{(3)}\) is worse than \(x^{(2)}\) on both counts \((J_2 \text{ and } J_1)\)

• \(x^{(1)}\) is better than \(x^{(2)}\) in \(J_2\), but worse in \(J_1\)
Weighted-sum objective

• to find Pareto optimal points, *i.e.*, x’s on optimal trade-off curve, we minimize *weighted-sum objective*

$$J_1 + \mu J_2 = \|Ax - y\|^2 + \mu\|Fx - g\|^2$$

• parameter $\mu \geq 0$ gives relative weight between J_1 and J_2

• points where weighted sum is constant, $J_1 + \mu J_2 = \alpha$, correspond to line with slope $-\mu$ on (J_2, J_1) plot
\[J_1 + \mu J_2 = \alpha \]

- \(x^{(2)} \) minimizes weighted-sum objective for \(\mu \) shown
- by varying \(\mu \) from 0 to \(+\infty \), can sweep out entire optimal tradeoff curve
Minimizing weighted-sum objective

can express weighted-sum objective as ordinary least-squares objective:

\[
\| Ax - y \|^2 + \mu \| Fx - g \|^2 = \left\| \begin{bmatrix} A \\ \sqrt{\mu} F \end{bmatrix} x - \begin{bmatrix} y \\ \sqrt{\mu} g \end{bmatrix} \right\|^2
\]

\[
= \left\| \tilde{A} x - \tilde{y} \right\|^2
\]

where

\[
\tilde{A} = \begin{bmatrix} A \\ \sqrt{\mu} F \end{bmatrix}, \quad \tilde{y} = \begin{bmatrix} y \\ \sqrt{\mu} g \end{bmatrix}
\]

hence solution is (assuming \(\tilde{A} \) full rank)

\[
x = \left(\tilde{A}^T \tilde{A} \right)^{-1} \tilde{A}^T \tilde{y}
\]

\[
= \left(A^T A + \mu F^T F \right)^{-1} (A^T y + \mu F^T g)
\]
Example

- unit mass at rest subject to forces x_i for $i - 1 < t \leq i$, $i = 1, \ldots, 10$

- $y \in \mathbb{R}$ is position at $t = 10$; $y = a^T x$ where $a \in \mathbb{R}^{10}$

- $J_1 = (y - 1)^2$ (final position error squared)

- $J_2 = \|x\|^2$ (sum of squares of forces)

weighted-sum objective: $(a^T x - 1)^2 + \mu \|x\|^2$

optimal x:

$$x = (aa^T + \mu I)^{-1} a$$
optimal trade-off curve:

\[J_1 = (y - 1)^2 \]

\[J_2 = \|x\|^2 \]

- upper left corner of optimal trade-off curve corresponds to \(x = 0 \)
- bottom right corresponds to input that yields \(y = 1 \), i.e., \(J_1 = 0 \)
Regularized least-squares

when $F = I$, $g = 0$ the objectives are

$$J_1 = \|Ax - y\|^2, \quad J_2 = \|x\|^2$$

minimizer of weighted-sum objective,

$$x = (A^TA + \mu I)^{-1} A^Ty,$$

is called regularized least-squares (approximate) solution of $Ax \approx y$

- also called Tychonov regularization
- for $\mu > 0$, works for any A (no restrictions on shape, rank . . .)
estimation/inversion application:

- $Ax - y$ is sensor residual

- prior information: x small

- or, model only accurate for x small

- regularized solution trades off sensor fit, size of x
Nonlinear least-squares

nonlinear least-squares (NLLS) problem: find \(x \in \mathbb{R}^n \) that minimizes

\[
\|r(x)\|^2 = \sum_{i=1}^{m} r_i(x)^2,
\]

where \(r : \mathbb{R}^n \rightarrow \mathbb{R}^m \)

- \(r(x) \) is a vector of ‘residuals’
- reduces to (linear) least-squares if \(r(x) = Ax - y \)
Position estimation from ranges

estimate position \(x \in \mathbb{R}^2 \) from approximate distances to beacons at locations \(b_1, \ldots, b_m \in \mathbb{R}^2 \) without linearizing

- we measure \(\rho_i = \| x - b_i \| + v_i \)
 \((v_i \text{ is range error, unknown but assumed small})\)

- NLLS estimate: choose \(\hat{x} \) to minimize

\[
\sum_{i=1}^{m} r_i(x)^2 = \sum_{i=1}^{m} (\rho_i - \| x - b_i \|)^2
\]
Gauss-Newton method for NLLS

NLLS: find $x \in \mathbb{R}^n$ that minimizes $\|r(x)\|^2 = \sum_{i=1}^{m} r_i(x)^2$, where $r : \mathbb{R}^n \to \mathbb{R}^m$

- in general, very hard to solve exactly
- many good heuristics to compute *locally optimal* solution

Gauss-Newton method:

given starting guess for x
repeat
 linearize r near current guess
 new guess is linear LS solution, using linearized r
until convergence
Gauss-Newton method (more detail):

- linearize r near current iterate $x^{(k)}$:

$$r(x) \approx r(x^{(k)}) + Dr(x^{(k)})(x - x^{(k)})$$

where Dr is the Jacobian: $(Dr)_{ij} = \partial r_i / \partial x_j$

- write linearized approximation as

$$r(x^{(k)}) + Dr(x^{(k)})(x - x^{(k)}) = A^{(k)}x - b^{(k)}$$

$$A^{(k)} = Dr(x^{(k)}), \quad b^{(k)} = Dr(x^{(k)})x^{(k)} - r(x^{(k)})$$

- at kth iteration, we approximate NLLS problem by linear LS problem:

$$\|r(x)\|^2 \approx \|A^{(k)}x - b^{(k)}\|^2$$
• next iterate solves this linearized LS problem:

\[x^{(k+1)} = \left(A^{(k)T} A^{(k)} \right)^{-1} A^{(k)T} b^{(k)} \]

• repeat until convergence (which \textit{isn't} guaranteed)
Gauss-Newton example

- 10 beacons
- + true position $(-3.6, 3.2)$; ◇ initial guess $(1.2, -1.2)$
- range estimates accurate to ± 0.5
NLLS objective $\|r(x)\|^2$ versus x:

- for a linear LS problem, objective would be nice quadratic ‘bowl’
- bumps in objective due to strong nonlinearity of r
objective of Gauss-Newton iterates:

- $x^{(k)}$ converges to (in this case, global) minimum of $\|r(x)\|^2$
- convergence takes only five or so steps
• final estimate is \(\hat{x} = (-3.3, 3.3) \)

• estimation error is \(\|\hat{x} - x\| = 0.31 \)
 (substantially smaller than range accuracy!)
convergence of Gauss-Newton iterates:
useful variation on Gauss-Newton: add regularization term

\[\| A^{(k)} x - b^{(k)} \|^2 + \mu \| x - x^{(k)} \|^2 \]

so that next iterate is not too far from previous one (hence, linearized model still pretty accurate)