Lecture 3
Linear algebra review

- vector space, subspaces
- independence, basis, dimension
- range, nullspace, rank
- change of coordinates
- norm, angle, inner product
Vector spaces

a vector space or linear space (over the reals) consists of

• a set \mathcal{V}

• a vector sum $+ : \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$

• a scalar multiplication $: \mathbb{R} \times \mathcal{V} \rightarrow \mathcal{V}$

• a distinguished element $0 \in \mathcal{V}$

which satisfy a list of properties
• $x + y = y + x, \quad \forall x, y \in V$ (+ is commutative)

• $(x + y) + z = x + (y + z), \quad \forall x, y, z \in V$ (+ is associative)

• $0 + x = x, \forall x \in V$ (0 is additive identity)

• $\forall x \in V \ \exists (-x) \in V \text{ s.t. } x + (-x) = 0$ (existence of additive inverse)

• $(\alpha \beta)x = \alpha(\beta x), \quad \forall \alpha, \beta \in \mathbb{R} \quad \forall x \in V$ (scalar mult. is associative)

• $\alpha(x + y) = \alpha x + \alpha y, \quad \forall \alpha \in \mathbb{R} \quad \forall x, y \in V$ (right distributive rule)

• $(\alpha + \beta)x = \alpha x + \beta x, \quad \forall \alpha, \beta \in \mathbb{R} \quad \forall x \in V$ (left distributive rule)

• $1x = x, \quad \forall x \in V$
Examples

• $\mathcal{V}_1 = \mathbb{R}^n$, with standard (componentwise) vector addition and scalar multiplication

• $\mathcal{V}_2 = \{0\}$ (where $0 \in \mathbb{R}^n$)

• $\mathcal{V}_3 = \text{span}(v_1, v_2, \ldots, v_k)$ where

$$\text{span}(v_1, v_2, \ldots, v_k) = \{\alpha_1 v_1 + \cdots + \alpha_k v_k \mid \alpha_i \in \mathbb{R}\}$$

and $v_1, \ldots, v_k \in \mathbb{R}^n$
Subspaces

• a \textit{subspace} of a vector space is a \textit{subset} of a vector space which is itself a vector space

• roughly speaking, a subspace is closed under vector addition and scalar multiplication

• examples \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3 above are subspaces of \mathbb{R}^n
Vector spaces of functions

- $V_4 = \{x : \mathbb{R}_+ \to \mathbb{R}^n \mid x \text{ is differentiable}\}$, where vector sum is sum of functions:
 \[(x + z)(t) = x(t) + z(t)\]
 and scalar multiplication is defined by
 \[(\alpha x)(t) = \alpha x(t)\]
 (a point in V_4 is a trajectory in \mathbb{R}^n)

- $V_5 = \{x \in V_4 \mid \dot{x} = Ax\}$
 (points in V_5 are trajectories of the linear system $\dot{x} = Ax$)

- V_5 is a subspace of V_4
Independent set of vectors

A set of vectors \(\{v_1, v_2, \ldots, v_k\} \) is independent if

\[
\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k = 0 \iff \alpha_1 = \alpha_2 = \cdots = 0
\]

Some equivalent conditions:

- Coefficients of \(\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k \) are uniquely determined, i.e.,

\[
\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k = \beta_1 v_1 + \beta_2 v_2 + \cdots + \beta_k v_k
\]

implies \(\alpha_1 = \beta_1, \alpha_2 = \beta_2, \ldots, \alpha_k = \beta_k \)

- No vector \(v_i \) can be expressed as a linear combination of the other vectors \(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k \)
Basis and dimension

set of vectors \(\{v_1, v_2, \ldots, v_k\} \) is a basis for a vector space \(\mathcal{V} \) if

- \(v_1, v_2, \ldots, v_k \) span \(\mathcal{V} \), i.e., \(\mathcal{V} = \text{span}(v_1, v_2, \ldots, v_k) \)
- \(\{v_1, v_2, \ldots, v_k\} \) is independent

equivalent: every \(v \in \mathcal{V} \) can be uniquely expressed as

\[
v = \alpha_1 v_1 + \cdots + \alpha_k v_k
\]

fact: for a given vector space \(\mathcal{V} \), the number of vectors in any basis is the same

number of vectors in any basis is called the *dimension* of \(\mathcal{V} \), denoted \(\dim \mathcal{V} \)

(we assign \(\dim \{0\} = 0 \), and \(\dim \mathcal{V} = \infty \) if there is no basis)
Nullspace of a matrix

the *nullspace* of \(A \in \mathbb{R}^{m \times n} \) is defined as

\[
\mathcal{N}(A) = \{ \ x \in \mathbb{R}^n \ | \ Ax = 0 \ \}
\]

- \(\mathcal{N}(A) \) is set of vectors mapped to zero by \(y = Ax \)
- \(\mathcal{N}(A) \) is set of vectors orthogonal to all rows of \(A \)

\(\mathcal{N}(A) \) gives *ambiguity* in \(x \) given \(y = Ax \):

- if \(y = Ax \) and \(z \in \mathcal{N}(A) \), then \(y = A(x + z) \)

- conversely, if \(y = Ax \) and \(y = A\tilde{x} \), then \(\tilde{x} = x + z \) for some \(z \in \mathcal{N}(A) \)
Zero nullspace

A is called one-to-one if 0 is the only element of its nullspace:
$\mathcal{N}(A) = \{0\} \iff$

- x can always be uniquely determined from $y = Ax$
 (i.e., the linear transformation $y = Ax$ doesn’t ‘lose’ information)

- mapping from x to Ax is one-to-one: different x’s map to different y’s

- columns of A are independent (hence, a basis for their span)

- A has a left inverse, i.e., there is a matrix $B \in \mathbb{R}^{n \times m}$ s.t. $BA = I$

- $\det(A^T A) \neq 0$

(we’ll establish these later)
Interpretations of nullspace

suppose $z \in \mathcal{N}(A)$

$y = Ax$ represents **measurement** of x

- z is undetectable from sensors — get zero sensor readings
- x and $x + z$ are indistinguishable from sensors: $Ax = A(x + z)$

$\mathcal{N}(A)$ characterizes **ambiguity** in x from measurement $y = Ax$

$y = Ax$ represents **output** resulting from input x

- z is an input with no result
- x and $x + z$ have same result

$\mathcal{N}(A)$ characterizes **freedom of input choice** for given result
Range of a matrix

the range of $A \in \mathbb{R}^{m \times n}$ is defined as

$$\mathcal{R}(A) = \{Ax \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$$

$\mathcal{R}(A)$ can be interpreted as

- the set of vectors that can be ‘hit’ by linear mapping $y = Ax$
- the span of columns of A
- the set of vectors y for which $Ax = y$ has a solution
Onto matrices

A is called onto if \(\mathcal{R}(A) = \mathbb{R}^m \iff \)

- \(Ax = y \) can be solved in \(x \) for any \(y \)
- columns of \(A \) span \(\mathbb{R}^m \)
- \(A \) has a right inverse, i.e., there is a matrix \(B \in \mathbb{R}^{n \times m} \) s.t. \(AB = I \)
- rows of \(A \) are independent
- \(\mathcal{N}(A^T) = \{0\} \)
- \(\det(AA^T) \neq 0 \)

(some of these are not obvious; we’ll establish them later)
Interpretations of range

suppose $v \in \mathcal{R}(A)$, $w \notin \mathcal{R}(A)$

$y = Ax$ represents **measurement** of x

- $y = v$ is a *possible* or *consistent* sensor signal
- $y = w$ is *impossible* or *inconsistent*; sensors have failed or model is wrong

$y = Ax$ represents **output** resulting from input x

- v is a possible result or output
- w cannot be a result or output

$\mathcal{R}(A)$ characterizes the *possible results* or *achievable outputs*
Inverse

$A \in \mathbb{R}^{n \times n}$ is invertible or nonsingular if $\det A \neq 0$

equivalent conditions:

• columns of A are a basis for \mathbb{R}^n

• rows of A are a basis for \mathbb{R}^n

• $y = Ax$ has a unique solution x for every $y \in \mathbb{R}^n$

• A has a (left and right) inverse denoted $A^{-1} \in \mathbb{R}^{n \times n}$, with $AA^{-1} = A^{-1}A = I$

• $\mathcal{N}(A) = \{0\}$

• $\mathcal{R}(A) = \mathbb{R}^n$

• $\det A^T A = \det AA^T \neq 0$
Interpretations of inverse

suppose $A \in \mathbb{R}^{n \times n}$ has inverse $B = A^{-1}$

- mapping associated with B undoes mapping associated with A (applied either before or after!)

- $x = By$ is a perfect (pre- or post-) equalizer for the channel $y = Ax$

- $x = By$ is unique solution of $Ax = y$
Dual basis interpretation

- let a_i be columns of A, and \tilde{b}_i^T be rows of $B = A^{-1}$
- from $y = x_1a_1 + \cdots + x_na_n$ and $x_i = \tilde{b}_i^Ty$, we get

 $y = \sum_{i=1}^{n}(\tilde{b}_i^Ty)a_i$

 thus, inner product with rows of inverse matrix gives the coefficients in the expansion of a vector in the columns of the matrix

- $\{\tilde{b}_1, \ldots, \tilde{b}_n\}$ and $\{a_1, \ldots, a_n\}$ are called dual bases
Rank of a matrix

we define the \textit{rank} of $A \in \mathbb{R}^{m \times n}$ as

$$\text{rank}(A) = \dim \mathcal{R}(A)$$

\text{(nontrivial) facts:}

\begin{itemize}
 \item \textbf{rank}(A) = \textbf{rank}(A^{T})
 \item \textbf{rank}(A) is maximum number of independent columns (or rows) of A
 hence \textbf{rank}(A) \leq \text{min}(m, n)
 \item \textbf{rank}(A) + \dim \mathcal{N}(A) = n
\end{itemize}
Conservation of dimension

interpretation of $\text{rank}(A) + \text{dim} \mathcal{N}(A) = n$:

- $\text{rank}(A)$ is dimension of set ‘hit’ by the mapping $y = Ax$

- $\text{dim} \mathcal{N}(A)$ is dimension of set of x ‘crushed’ to zero by $y = Ax$

- ‘conservation of dimension’: each dimension of input is either crushed to zero or ends up in output

- roughly speaking:
 - n is number of degrees of freedom in input x
 - $\text{dim} \mathcal{N}(A)$ is number of degrees of freedom lost in the mapping from x to $y = Ax$
 - $\text{rank}(A)$ is number of degrees of freedom in output y
‘Coding’ interpretation of rank

• rank of product: \(\text{rank}(BC') \leq \min\{\text{rank}(B), \text{rank}(C')\} \)

• hence if \(A = BC \) with \(B \in \mathbb{R}^{m \times r}, C \in \mathbb{R}^{r \times n} \), then \(\text{rank}(A) \leq r \)

• conversely: if \(\text{rank}(A) = r \) then \(A \in \mathbb{R}^{m \times n} \) can be factored as \(A = BC \) with \(B \in \mathbb{R}^{m \times r}, C \in \mathbb{R}^{r \times n} \):

\[
\begin{array}{ccc}
\text{x} & \xrightarrow{n} & \text{A} & \xrightarrow{m} & \text{y} \\
\end{array}
\quad \equiv \quad
\begin{array}{ccc}
\text{x} & \xrightarrow{n} & \text{C} & \xrightarrow{r} & \text{B} & \xrightarrow{m} & \text{y} \\
\end{array}
\]

• \(\text{rank}(A) = r \) is minimum size of vector needed to faithfully reconstruct \(y \) from \(x \)
Application: fast matrix-vector multiplication

- Need to compute matrix-vector product $y = Ax$, $A \in \mathbb{R}^{m \times n}$

- A has known factorization $A = BC$, $B \in \mathbb{R}^{m \times r}$

- Computing $y = Ax$ directly: mn operations

- Computing $y = Ax$ as $y = B(Cx)$ (compute $z = Cx$ first, then $y = Bz$): $rn + mr = (m + n)r$ operations

- Savings can be considerable if $r \ll \min\{m, n\}$
Full rank matrices

for $A \in \mathbb{R}^{m \times n}$ we always have $\text{rank}(A) \leq \min(m, n)$

we say A is full rank if $\text{rank}(A) = \min(m, n)$

• for **square** matrices, full rank means nonsingular

• for **skinny** matrices ($m \geq n$), full rank means columns are independent

• for **fat** matrices ($m \leq n$), full rank means rows are independent
Change of coordinates

‘standard’ basis vectors in \mathbb{R}^n: (e_1, e_2, \ldots, e_n) where

$$e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

(1 in ith component)

obviously we have

$$x = x_1 e_1 + x_2 e_2 + \cdots + x_n e_n$$

x_i are called the coordinates of x (in the standard basis)
if \((t_1, t_2, \ldots, t_n)\) is another basis for \(\mathbb{R}^n\), we have

\[
x = \tilde{x}_1 t_1 + \tilde{x}_2 t_2 + \cdots + \tilde{x}_n t_n
\]

where \(\tilde{x}_i\) are the coordinates of \(x\) in the basis \((t_1, t_2, \ldots, t_n)\)

define \(T = \begin{bmatrix} t_1 & t_2 & \cdots & t_n \end{bmatrix}\) so \(x = T \tilde{x}\), hence

\[
\tilde{x} = T^{-1} x
\]

\((T\) is invertible since \(t_i\) are a basis)\n
\(T^{-1}\) transforms (standard basis) coordinates of \(x\) into \(t_i\)-coordinates

inner product \(i\)th row of \(T^{-1}\) with \(x\) extracts \(t_i\)-coordinate of \(x\)
consider linear transformation \(y = Ax, \ A \in \mathbb{R}^{n \times n} \)

express \(y \) and \(x \) in terms of \(t_1, t_2 \ldots, t_n \):

\[
x = T\tilde{x}, \quad y = T\tilde{y}
\]

so

\[
\tilde{y} = (T^{-1}AT)\tilde{x}
\]

- \(A \rightarrow T^{-1}AT \) is called similarity transformation

- similarity transformation by \(T \) expresses linear transformation \(y = Ax \) in coordinates \(t_1, t_2, \ldots, t_n \)
(Euclidean) norm

for $x \in \mathbb{R}^n$ we define the (Euclidean) norm as

$$\|x\| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2} = \sqrt{x^T x}$$

$\|x\|$ measures length of vector (from origin)

important properties:

- $\|\alpha x\| = |\alpha|\|x\|$ (homogeneity)
- $\|x + y\| \leq \|x\| + \|y\|$ (triangle inequality)
- $\|x\| \geq 0$ (nonnegativity)
- $\|x\| = 0 \iff x = 0$ (definiteness)
RMS value and (Euclidean) distance

root-mean-square (RMS) value of vector $x \in \mathbb{R}^n$:

$$\text{rms}(x) = \left(\frac{1}{n} \sum_{i=1}^{n} x_i^2 \right)^{1/2} = \frac{\|x\|}{\sqrt{n}}$$

norm defines distance between vectors: $\text{dist}(x, y) = \|x - y\|$
Inner product

\[\langle x, y \rangle := x_1y_1 + x_2y_2 + \cdots + x_ny_n = x^T y \]

important properties:

- \(\langle \alpha x, y \rangle = \alpha \langle x, y \rangle \)
- \(\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle \)
- \(\langle x, y \rangle = \langle y, x \rangle \)
- \(\langle x, x \rangle \geq 0 \)
- \(\langle x, x \rangle = 0 \iff x = 0 \)

\(f(y) = \langle x, y \rangle \) is linear function: \(\mathbb{R}^n \rightarrow \mathbb{R} \), with linear map defined by row vector \(x^T \)
Cauchy-Schwarz inequality and angle between vectors

- for any \(x, y \in \mathbb{R}^n \), \(|x^T y| \leq \|x\| \|y\| \)

- (unsigned) angle between vectors in \(\mathbb{R}^n \) defined as

\[
\theta = \angle (x, y) = \cos^{-1} \left(\frac{x^T y}{\|x\| \|y\|} \right)
\]

thus \(x^T y = \|x\| \|y\| \cos \theta \)
special cases:

- **x and y are aligned**: $\theta = 0$; $x^T y = \|x\|\|y\|$;
 (if $x \neq 0$) $y = \alpha x$ for some $\alpha \geq 0$

- **x and y are opposed**: $\theta = \pi$; $x^T y = -\|x\|\|y\|$;
 (if $x \neq 0$) $y = -\alpha x$ for some $\alpha \geq 0$

- **x and y are orthogonal**: $\theta = \pi/2$ or $-\pi/2$; $x^T y = 0$
 denoted $x \perp y$
interpretation of $x^T y > 0$ and $x^T y < 0$:

- $x^T y > 0$ means $\angle(x, y)$ is acute
- $x^T y < 0$ means $\angle(x, y)$ is obtuse

$\{x \mid x^T y \leq 0\}$ defines a halfspace with outward normal vector y, and boundary passing through 0