1 Gradient of the norm function

Recall that the gradient of a differentiable function \(f : \mathbb{R}^n \to \mathbb{R} \) at a point \(x \in \mathbb{R}^n \) is defined to be the vector

\[
\nabla f(x) = \begin{bmatrix}
\frac{\partial f}{\partial x_1}(x) \\
\vdots \\
\frac{\partial f}{\partial x_n}(x)
\end{bmatrix}.
\]

The first-order Taylor expansion of \(f \) near \(x \) is given by

\[
\hat{f}_1(z) = f(x) + \nabla f(x)^T(z - x).
\]

This function is affine: that is, a linear function plus a constant offset. If \(z \) is near \(x \), then \(\hat{f}_1(z) \) is very near \(f(z) \). Find the gradient of the function \(f(x) = \|x\| \).

2 Some standard time-series models

In some contexts, a discrete-time signal is called a time series. The study of time series predates the extensive study of linear state-space systems, and is used in many fields. Let \(u \) and \(y \) be two time series, which we will think of as the input and output, respectively.

(a) The relation (or time-series model)

\[
y(k) = a_0 u(k) + a_1 u(k - 1) + \cdots + a_r u(k - r)
\]

is called a moving-average (MA) model. Since the output at time \(k \) is a weighted average of the previous \(r \) inputs, we can think of the output as the average of the inputs in a moving window. Express this model as a linear dynamical system with input \(u \), output \(y \), and state

\[
x(k) = \begin{bmatrix}
u(k - 1) \\
\vdots \\
u(k - r)
\end{bmatrix}.
\]

(b) Another time-series model is

\[
y(k) = u(k) + b_1 y(k - 1) + \cdots + b_p y(k - p).
\]

This model is called an autoregressive (AR) model, since the current output is a linear combination of the current input, and some previous values of the output. Express this model as a linear dynamical system with input \(u \), output \(y \), and state

\[
x(k) = \begin{bmatrix}
y(k - 1) \\
\vdots \\
y(k - p)
\end{bmatrix}.
\]
(c) A third widely used model is the autoregressive, moving-average (ARMA) model, which combines the MA and AR models:

\[y(k) = a_0 u(k) + \cdots + a_r u(k - r) + b_1 y(k - 1) + \cdots + b_p y(k - p). \]

Express this model as a linear dynamical system with input \(u \) and output \(y \) (you can choose the state; there are many possible choices, and not all choices have the same dimension).

3 Some linear functions associated with a convolution system

Suppose that \(u \) and \(y \) are discrete-time scalar signals related via convolution:

\[y(t) = \sum_{\tau = -\infty}^{+\infty} h(t - \tau) u(\tau), \quad t \in \mathbb{Z}, \]

where \((h(t) : t \in \mathbb{Z}) \) is a known discrete-time scalar signal. You may assume that the system is causal: that is, \(h(t) = 0 \) for all \(t < 0 \).

(a) Suppose \(u(t) = 0 \) for all \(t < 0 \). Define the vectors

\[\vec{u} = \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(T) \end{bmatrix} \quad \text{and} \quad \vec{y} = \begin{bmatrix} y(0) \\ y(1) \\ \vdots \\ y(T) \end{bmatrix}. \]

Thus, \(\vec{u} \) and \(\vec{y} \) are the first \(T + 1 \) values of the input and output signals, respectively. Find the matrix \(G \in \mathbb{R}^{(T+1) \times (T+1)} \) such that \(\vec{y} = G \vec{u} \). The matrix \(G \) describes the linear mapping from (a segment of) the input sequence to (a segment of) the output sequence; \(G \) is called the input/output or Toeplitz matrix of size \(T + 1 \) associated with the convolution system.

(b) Now suppose that \(u(t) = 0 \) for all \(t < 0 \) and \(t > T \). Define the vectors

\[\vec{u} = \begin{bmatrix} u(T) \\ u(T - 1) \\ \vdots \\ u(0) \end{bmatrix} \quad \text{and} \quad \vec{y} = \begin{bmatrix} y(T) \\ y(T + 1) \\ \vdots \\ y(2T) \end{bmatrix}. \]

Thus, \(\vec{u} \) is the input to the system, and \(\vec{y} \) is (a segment of) the future output of the system. Find the matrix \(H \in \mathbb{R}^{(T+1) \times (T+1)} \) such that \(\vec{y} = H \vec{u} \). The matrix \(H \) describes the linear mapping from the input sequence to (a segment of) the future output sequence; \(H \) is called the Hankel matrix of size \(T + 1 \) associated with the convolution system.
4 Counting paths in an undirected graph
Consider an undirected graph with \(n \) nodes, and no self loops. Let \(A \in \mathbb{R}^{n \times n} \) be the node-adjacency matrix, which is defined such that
\[
A_{ij} = \begin{cases}
1 & \text{there is an edge between nodes } i \text{ and } j, \\
0 & \text{otherwise.}
\end{cases}
\]
Note that \(A = A^T \) because the graph is undirected, and \(A_{ii} = 0 \) since there are no self loops. Give an interpretation of \((A^p)_{ij}\) (that is the \((i,j)\)-entry of \(A^p\)) for \(p \in \mathbb{N} \).

5 Memory of a linear, time-invariant system
Suppose an input signal \((u_t : t \in \mathbb{Z}) \), and an output signal \((y_t : t \in \mathbb{Z}) \) are related by a convolution operator:
\[
y_t = \sum_{\tau=1}^{M} h_{\tau} u_{t-\tau},
\]
where \(h = (h_1, \ldots, h_M) \) are the impulse-response coefficients of the convolution system. (Convolution systems are also called linear, time-invariant systems.) If \(h_M \neq 0 \), then \(M \) is called the memory of the system. You are given the input and output signals for \(t = 1, \ldots, T \):
\[
u_1, \ldots, u_T \quad \text{and} \quad y_1, \ldots, y_T.
\]
However, you do not know \(u_t \) or \(y_t \) for \(y < 1 \) or \(t > T \), and you do not know the impulse response, \(h \).

(a) Explain how to find the smallest value of \(M \), and a corresponding impulse response \((h_t : t = 1, \ldots, M)\) that is consistent with the given data. You may assume that \(T > 2M \).

(b) Apply your method to the data in \texttt{lti_memory_data.m}. Report the value of \(M \) that you find.

Hint. The function \texttt{toeplitz} may be useful.