1 Ridge regression and the signal-to-noise ratio

Suppose \(x_1, \ldots, x_n \) and \(\epsilon_1, \ldots, \epsilon_n \) are independent normal random variables, that each \(x_j \) has mean zero and variance \(\tau^2 \), each \(\epsilon_i \) has mean zero and variance \(\sigma^2 \), and we are given a measurement

\[
y = Ax + \epsilon,
\]

where \(A \in \mathbb{R}^{m \times n} \) is a known, nonrandom matrix. We think of \(x \) as a random signal, and \(y \) as a noisy measurement of \(x \), where \(\epsilon \) is the noise that corrupts our measurement. The signal-to-noise ratio is defined to be \(\rho = \left(\frac{\tau}{\sigma} \right)^2 \). Throughout the problem, use the specific parameter values

\[
m = 10, \quad n = 25, \quad \sigma^2 = 3, \quad \text{and} \quad \tau^2 = 2.
\]

Note that there are more parameters than measurements, so we cannot compute a least-squares estimate of \(x \) given \(y \). Carry out \(N = 1000 \) repetitions of the following experiment.

- Generate independent random variables \(x_j, \epsilon_i, \) and \(A_{ij} \) for \(i = 1, \ldots, m \) and \(j = 1, \ldots, n \). Let each \(x_j \) be a normal random variable with mean zero and variance \(\tau^2 \), each \(\epsilon_i \) be a normal random variable with mean zero and variance \(\sigma^2 \), and each \(A_{ij} \) be a uniform random variable on the interval \([0, 1]\). Compute the measurement \(y = Ax + \epsilon \). Note that we can generate a vector of length \(n \) whose components are independent normal random variables with mean zero and variance \(\tau^2 \) using the \texttt{MATLAB} command

\[
\text{tau} \ast \text{randn} (n, 1).
\]

- For \(K = 100 \) values of \(\lambda \) uniformly spaced on a logarithmic scale between \(\frac{1}{1000\rho} \) and \(1000\rho \), use the measurement \(y \) to compute the regularized least-squares estimate \(\hat{x}(\lambda) \). Then, compute the squared error \(e(\lambda) = \| x - \hat{x}(\lambda) \|^2 \).

Make a plot of the squared error averaged over the \(N \) repetitions of the experiment versus the regularization parameter \(\lambda \). Indicate the point \(\frac{1}{\rho} \) on your plot. Comment on the results.