1 Optimal operation of a two-state chemical reactor
(a) Explain how to choose T_0. (4 points)

(b) • Report the optimal value of T_0. (1 point)
 • Report the corresponding amount of compound k. (1 point)
 • Submit a plot showing $x(t)$ as a function of time. (2 points)

(c) Explain how to choose T_1 and T_2. (6 points)

(d) • Report the optimal values of T_1 and T_2. (2 points [1 each])
 • Report the corresponding amount of compound k. (2 points)
 • Submit a plot showing $x(t)$ as a function of time. (2 points)

2 Ranking teams in a round-robin tournament
(a) • According to our usual analysis, what is the value of \bar{x}? (2 points)
 • State the assumptions that we use to justify our analysis. (2 points)

(b) • According to our usual analysis, what is the value of ρ? (2 points)
 • State the usual assumptions that we use to justify our analysis. (3 points)

(c) (i) • Submit a plot showing $x_j(t)$ for $j = 10, 20, 30$. (1 point)
 • Indicate \bar{x} on your plot. (1 point)

(ii) • Submit a plot showing $\|e(t)\|$. (1 point)
 • Report the value of ρ. (1 point)
 • Explain how the slope of the plot is related to ρ. (1 point)

(iii) • Are the assumptions that we usually use to justify our analysis of the asymptotic behavior of $x(t)$ satisfied? (1 point)
 • Does our usual conclusion hold? (1 point)

(iv) • Are the assumptions that we usually use to justify our analysis of the asymptotic behavior of $\|e(t + 1)\|/\|e(t)\|$ satisfied? (1 point)
 • Does our usual conclusion hold? (1 point)

(v) Which team is most overrated if we use win/loss record instead of our refined scoring system? (1 point)

(vi) Which team is most underrated if we use win/loss record instead of our refined scoring system? (1 point)

3 Minimum-sensitivity estimation of radiation levels
(a) Explain how to choose the measurement locations. (10 points)
(b) • Report the indices of your chosen measurement locations. (5 points)
 • Report the corresponding sensitivity. (2 points)
 • Submit a plot indicating the chosen measurement locations. (3 points)

4 Principal-components analysis of decathlon data
(a) • Submit a plot showing \(\sigma_j \) versus \(j \). (2 point)
 • Submit a plot of \(p_j \) versus \(j \). (2 point)
 • Report \(p_2 \). (1 point)
(b) • Submit a plot with the point \((v_1)_j, (v_2)_j\) labeled with the name of the \(j \)th event. (2 points)
 • Do similar events appear to be close together? (1 point)
(c) • Submit a spatial plot of \(r \). (2 points)
 • Which right singular vector seems to represent \(r \)? (2 points)
(d) • Submit a spatial plot of \(t \). (2 points)
 • Submit a spatial plot of \(\delta \). (2 points)
 • Give an intuitive interpretation of the first left singular vector of \(X \). (2 points)
 • Give an intuitive interpretation of the second left singular vector of \(X \). (2 points)

5 Stock-market prediction using maximum-correlation linear functions
(a) Show that
 \[
 r(u, v) = \frac{\alpha^T X \hat{Y}^T \beta}{\| X^T \alpha \| \| \hat{Y}^T \beta \|}.
 \]
 (4 points)
(b) • Explain how to choose \(a \) and \(b \) in order to maximize \(r(u, v) \). (3 points)
 • Explain how to find unit vectors \(\alpha \) and \(\beta \) that maximize \(r(u, v) \). (3 points)
(c) • Report your value of \(\alpha \). (2 points)
 • Report your value of \(\beta \). (2 points)
 • Report the corresponding value of \(r(u, v) \). (2 points)
(d) • Report the fraction of the time that we make money on the test set using the trading strategy based on \(\alpha \) and \(\beta \). (2 points)
 • Report the fraction of the time that we make money on the test set using the simple trading strategy. (2 points)