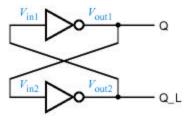
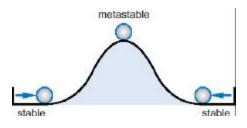
Lecture #11: Latches, Flops, and Metastability


Paul Hartke
Phartke@stanford.edu
Stanford EE121
February 14, 2002

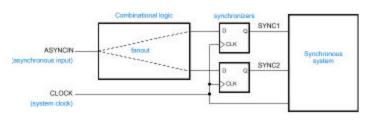
Administrivia

- Make sure to fill out TA evaluations!!!
 - Incentive: 5 Point bonus on Lab 6
 - Lab 6 is only worth 60
 - Everything is anonymous
- Lab 6 Prelab is due Midnight on Thursday.
 - This allows Thursday section to have a lab section to work on the hardware.
- Reading:
 - -7.1, 7.2.1, 7.2.3-7.2.7
 - 8.8-8.9 (only skim 8.9.8)

Bistable Element


- What are the stable operating regimes of this device?
 - Either Vout1 or Vout2 is high, right?

Analog Analysis

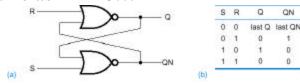

- There are two stable points but one "metastable" point.
 - Will leave metastability eventually because of random fluctuations.

Physical Analogy

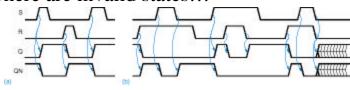
Fanout causes problems

- Each flop may interpret the signal differently if it is metastable.
 - Big Problem...

How to Avoid?

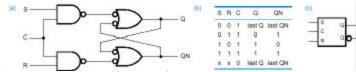

- If the *simplest* sequential circuit is susceptible to metastable behavior, you can be sure that *all* sequential circuits are susceptible.
 - And this behavior is not something that only occurs at power-up.
- This is a fundamental issue.
 - All you can do is wait...
 - Just like waiting for a stick on end to fall.

Latches and Flip-Flops

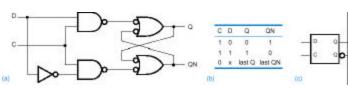

- A **flip-flop** samples its inputs and changes its inputs only at times determined by a clocking signal.
- A **latch** watches all of its inputs continuously and changes its outputs at any time, independent of a clocking signal.

SR Latch

• Same as in E40...

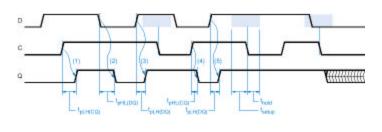


• There are invalid states...

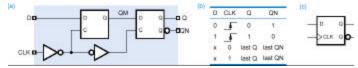


Clumsy so add Enable and D

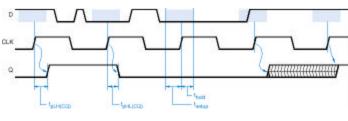
• Called clock but not really...



• "Transparent" Latch

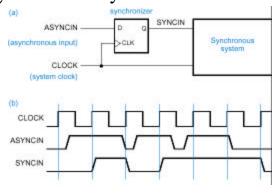

D Latch Timing

 Note propagation delay, setup and hold times

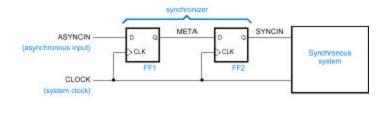


Use Two Latch to Make Edge-Triggered Device

• Master-Slave Design



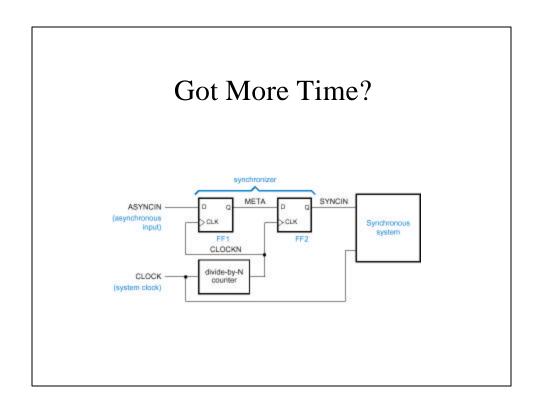
• Still have metastability issue


Asynchronous Inputs

• Have to convert "real-world" inputs for use in synchronous system.

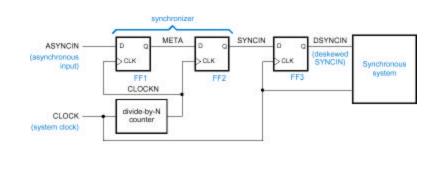
More Time!

- Give the signal more time to settle out.
 - Does not solve the problem!!
- This is the recommended design.

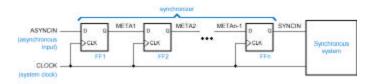


MTBF Formula

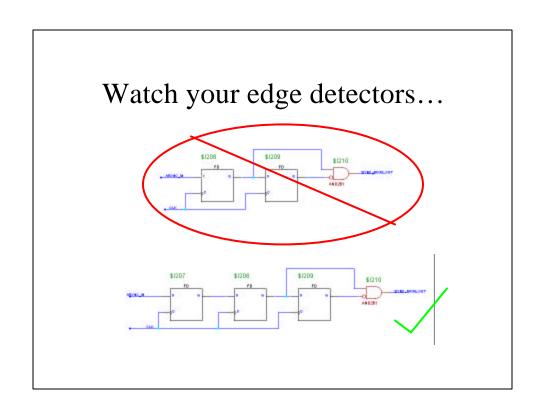
- Mean Time Between Failures
- If the synchronizer waits time tr, what is the time on average before failure occurs.
 - MTBF(tr) = exp(tr/tau) / To * f * a
- Make this value "large"


Metastability Param Values

Reference	Device	τ (ms)	To (s)	t, (ns)
Chancy (1983)	74LS74	1.50	4.0 - 10-1	77.71
Chaney (1983)	74874	1.70	1.0 - 10-6	66.14
Chancy (1983)	748174	1.20	5.0 - 10 ⁻⁶	48.62
Chancy (1983)	745374	0.91	4.0 10-4	40.86
Chaney (1983)	74F74	0.40	2.0 - 10-4	17.68
TI (1997)	74LSxx	1.35	$4.8 \cdot 10^{-3}$	63.97
TI (1997)	74Sxx	2.80	$1.3 \cdot 10^{-9}$	90.33
TI (1997)	74ALSxx	1.00	8.7 - 10-6	41.07
TI (1997)	74ASxx	0.25	$1.4 \cdot 10^3$	14.99
TI (1997)	74Fxx	0.11	1.9 · 10 ⁸	7.90
TI (1997)	74HCxx	1.82	1.5 - 10-6	71.55
Cypress (1997)	PALC16R8-25	0.52	$9.5 \cdot 10^{-12}$	14.224
Cypress (1997)	PALC22V10B-20	0.26	5.6 - 10-11	7.57*
Cypress (1997)	PALCE22V10-7	0.19	1.3 - 10 - 13	4.38*
Xilinx (1997)	7300-series CPLD	0.29	$1.0 \cdot 10^{-15}$	5.27*
Xilinx (1997)	9500-series CPLD	0.17	9.6 - 10-18	2.30*


Nope...

• Don't gate the clock!!!!!


Add more stages...

• Based on MTBF calculation

How many stages needed?

- See Xilinx App Note on Metastable Recovery
 - http://support.xilinx.com/xapp/xapp094.pdf
- Current FlipFlops have very high gain which helps pull out of metastability
 - Does not **solve** it...
 - Is a million years enough?
 - Remember Y2K!! ◎

