Lecture #8: More FSM Design

Paul Hartke
Phartke@stanford.edu
Stanford EE121
January 31, 2002

Administrivia

- Midterm #1 is next Tuesday (February 5^{th)} in class.
 - Will not include state machines.
- Lab 3 Design Post-Mortem
 - $\frac{3}{4}$ of you have had lab section
 - Comments/Issues?
- Lab 4 handout
 - Due next week as normal.
- HW3 handout
 - Due Next Thursday February 7th
 - Discussion later....

State Machine Design Process

- 1. Determination of inputs and outputs.
- 2. Determination of machine states.
- 3. Create State/Bubble Diagram—should this be a Mealy or Moore machine?
- 4. State Assignment—assign each state a particular value.
- 5. Create Transition/Output Table
- 6. Derive Next State Logic for each state element—using K-maps as necessary.
- 7. Derive Output logic.
- 8. Implement in Xilinx.

State Assignment

- State Assignment is a factor in designs ultimate size, speed, and power.
 - Good ones are heuristic based.
 - Use binary encoding to minimize Flip-Flops.
 - Use (modified) one-hot for minimal next state logic depth.
 - As we saw in previous example, not always a "big" win.
 - But more algorithmic for the advantages...

What about unassigned states?

• Consider "1's counter" that actually kept track of the previous number of bits is a multiple of 3.

		XY				
Meaning	s	00	01	11	10	z
Got zero 1s (modulo 4)	S0	S0	S1	S2	S1	1
Got one 1 (modulo 4)	\$1	S1	S2	S3	S2	0
Got two 1s (modulo 4)	S2	S2	S3	S0	S3	0
Got three 1s (modulo 4)	S3	S3	SO	S1	S0	0

States could be "Don't Cares"

- What is the advantage of Don't Cares?
- Any Downsides?

		XY				
Meaning	s	00	01	11	10	Z
Got zero 1s (modulo 4)	S0	SO	S1	S2	S1	- 1
Got one 1 (modulo 4)	\$1	S1	S2	S3	52	0
Got two 1s (modulo 4)	S2	S2	S3	SO	S3	0
Got three 1s (modulo 4)	S3	d	d	d ·	d	d
			S+			

"Safe" Method

- What if the FSM got into an invalid state.
 - Random bit error (from Gamma Radiation?)
- State machine will always get back in a known good state

		XY				
Meaning	s	00	01	11	10	Z
Got zero 1s (modulo 4)	S0	S0	S1	S2	S1	-1
Got one 1 (modulo 4)	\$1	S1	S2	53	\$2	0
Got two 1s (modulo 4)	S2	S2	S3	SO	S3	0
Got three 1s (modulo 4)	S3	SD	SD	50	50	0
			S*			

Input Invalid Values

- Same issue with some input value combinations.
 - Maybe you know something about the external circuit
 - one hot input on two signals

		XY				
Meaning	s	00	01	11	10	z
Got zero 1s (modulo 4)	S0	SO	S1	S2	S1	1
Got one 1 (modulo 4)	\$1	S1	S2	S3	S2	0
Got two 1s (modulo 4)	S2	S2	S3	SO	S3	0
Got three 1s (modulo 4)	S3	S3	SO	S1	S0	0
			S*	invi	alid Input	

One-Hot Encoding

• Using the "safe" method is painful for state assignment but no different for invalid input combos. Why?

Q1Q2Q3Q4	XY=00	XY=01	XY=11	XY=10	Z
0001	0001	0010	0100	0010	1
0010	0010	0100	1000	0100	0
0100	0100	1000	0001	1000	0
1000	1000	0001	0010	0001	0

Differences???

- Actually *very* big one.
 - Ignore bit errors for now...
- State Assignment is totally internal to the circuit.
 - Internal state
- Inputs are visible to all.
 - Interface
- What would OOP tell us about this?

Interface Rules

- "Be forgiving on the inputs and conservative on the outputs"
 - Some smart CS person.
- Makes your blocks easier to interface to.
 - Getting individual blocks to work is non-trivial.
 - Getting them to work together during integration is the even harder.
- Allows potential for reuse
 - Basis of "Intellectual Property" cores.

Decomposing State Machines

- Any digital system, no matter how big, can be implemented as a single state machine.
 - inputs, state vars, and outputs
 - State vars are too big because there are a lot of states that are independent of each other.
- Hierarchical design to the rescue again!!!

Hierarchical State Machine Design

- What is *Start*?
 - Another application for synchronous reset and enable
- *Done* is design dependent.

Counters as sub-FSMs

- Allows main state machine to wait some number of clocks between transitioning between states...
 - LFSR is a type of counter.
 - Do *NOT* do this on Lab 4

HW #3 Questions

• Show Timing Analyzer for other speed grade. Why is this not complete?

Midterm #1

- Boolean Algebra Axioms
- K-maps and Hazards
- Static CMOS gates
- Ground Bounce
- CV²f Power
- Something about a combinational logic circuit idiom
- FPGA Architecture.

Midterm #1(cont)

- Open Book, Open Notes
- Not designed to trick.
- Based as much as possible on interview questions.