
1

Lecture #5: Combinational Logic
Idioms

Paul Hartke
Phartke@stanford.edu

Stanford EE121
January 22, 2001

Book Reading

• Chapter 1
• Chapter 2.1-2.6
• Chapter 3.1.-3.7
• Chapter 4.1-4.3, 4.5
• Chapter 5.3, 5.4.1, 5.4.8, 5.5.1, 5.7.0, 5.8.1-5.8.4,

5.9.1-5.9.3, 5.10.1-5.10.7, 5.11.1
– Know the architectures involved but don’t need the

TTL equivalents or ABEL/VHDL
• Chapter 10.5-10.6

– Difference between CPLD and FPGA architecture

2

Combinational Logic

• Could implement all logic with K-maps
directly from specifications.
– Tedious and error prone

• Just as in programming use existing blocks
that raise the level of abstraction.

• Some CL has a special purpose that is often
used.

5.4 Decoders

• General Decoder Structure
– Typically n-inputs, 2^n ouputs
– 2-4, 3-8, 4-16 etc.

3

General Structure

• One of these will be needed for Lab 3

Binary 2-to-4 Decoder

• What is the difference between this and a 2-
1 mux?
– Note: “x” means don’t care

4

Binary 2-to-4 Decoder
Implementation

• Any difference?

3-to-8 Decoder

• What are the G’s?

5

Seven-Segment LED Driver

• Just a special decoder
• How many Karnaugh maps will it take to

design the logic for a seven-segment display
driver?
– Create a Karnaugh map for output e of the

seven-segment display driver.

5.5 Binary Encoder

• What if more than one output is active?
– Not necessarily bad.

6

Need Priority in Most
Applications

• Report input with highest priority among
potentially many requests.

8 input priority encoder

• Also need to report when there are no
matches.

7

Priority-Encoder Logic Equations

Programmable Priority Encoder

• That’s nice but it would be cooler if we
could change the priority so a specified
input is the highest/lowest.

• Lab 3! ☺

8

5.8 2-input XOR Gate

• Like an OR gate, but excludes the case
where both inputs are 1.

• XNOR: Complement of XOR

Gate Level XOR Implementation

• Note more expensive in CMOS than
AND/OR but not more expensive in LUT
FPGA.

9

Multi-Input XOR

• Sum Modulo 2
• Parity Computation

• Used to generate and check parity bits in computer
systems.
– Detects any single-bit error.

• What about 2, 3, 4, etc?

Balanced Trees are Faster

• Why?
– Useful for many architectures…

10

5.9 Comparators

• 1 bit and 4 bit

Inequality Comparator?

• What is the algorithm you use to compare
two numbers?
– Ie: 12345 vs 12645

• Transfer this to logic gates

11

Iterative Combinational Circuit

• Very General structure
– Size?, speed?

• How could you speed it up?

Iterative Comparator Circuit

12

Next Time

• Arithmetic
– Adders and Multipliers

