

Stanford University
Department of Electrical Engineering

EE 121
Winter 2001

Lab 3
Programmable Priority Encoder

Prelab Due Date: Tuesday, January 29, 2001 at 9:30am
This is a challenging Lab--Start Early!!

1 Overview

This week's laboratory assignment is to design and build a combinational circuit
called a programmable priority encoder (PPE). The PPE performs priority encoding
of eight input signals, where the input priorities are specified by control inputs and
therefore can change. You will use the Xilinx Foundation software to implement your
design and demonstrate it using the XC2S100 FPGA in the lab. The block diagram of
the system that you will build and test is shown in Figure 2. The logic symbol for the
PPE is shown in the following figure.

Figure 1: Prgrammable priority encoder logic symbol

The inputs to the PPE are eight request signals IREQ[7:0] and three control bits
LOWP[2:0]. The control bits, LOWP[2:0], encode in binary the value in the range
{0,…,7} that corresponds to the input that currently has lowest priority. Input i + 1 has
second lowest priority, while input i + 7 has highest priority. The expressions i + j are
calculated modulo 8; that is, only the low order three bits of the sum are used. For
example, when LOW[2:0] is 011 = 3, then the input with highest priority is (3 + 7) mod
8 = 10 mod 8 = 2. Input priorities as a function of the inputs LOWP[2:0] are shown in the
following table.

EE 121 Lab 3 Programmable Priority Encoder
Winter 2001

 Page 2

The output WIN[2:0] encodes the active input of highest priority, according to
the current setting of LOWP[2:0]. The WIN[2:0] value is valid only when there is at
least one active request, and the active low output /REQ indicates whether any request
input is active. The 4-bit CNT[3:0] output provides the number of active request inputs,
in the range {0,…,8}.

 The combinational logic that you will design for the PPE will be incorporated into
the system shown in Figure 2. (This is a simple sequential circuit.)

Figure 2: Programmable Priority Encoder demonstration circuit

The circuit shown in Figure 2 operates as follows. The 8-position DIP switch on
the XStend prototyping extender board produce the eight interrupt request signals
IREQ[7:0]. The number of active request signals is the 4-bit output CNT[3:0], which is
supplied to a seven-segment decoder that drives a seven-segment display on the XStend
board.

EE 121 Lab 3 Programmable Priority Encoder
Winter 2001

 Page 3

If any request input is active, the input with the highest priority, as determined by
the current value of LOWP[2:0], will be “acknowledged”. The binary encoding of that
input will be output on the signals WIN[2:0], and this encoding will be decoded by 3-to-
8 decoder, enabled by PPE output /REQ, to activate exactly one of the acknowledge
signals IACK[7:0]. The active IACKi turns on the corresponding LED of the LED bar
graph.

At discrete time instants, specified by the rising edge of a clock signal, the

encoded value of the winning interrupt request is stored in a 3-bit register, so that it
becomes the lowest priority request for the next interrupt cycle. The clock signal will be
produced either using a signal generator set to 1 Hz or slower or by a pushbutton on the
XStend board. The PPE output /REQ enables storing new values in the 3-bit latch, so the
output of the latch, which is supplied to the PPE inputs LOWP[2:0], are unchanged until
a request input is active. The register's current value is stored on the second seven-
segment display.

Laboratory Requirements

For this laboratory assignment, partners should work together.

A top-level schematic will be provided on the course web page that includes signal names
and pin assignments. Please make sure that all signals defined in this file are still in your
design. (Hint: Make your project look like Figure 2).

NOTE: For all your logic blocks, you are only allowed to use macros you build yourself
and the following basic gates:

AND2, AND3, AND4, NAND2, NAND3, NAND4, NOR2, NOR3, NOR4,
INV, OR2, OR3, OR4, XOR2, XNOR2, M2_1, GND, VCC

What to turn in for this week’s Prelab:

1. Complete Foundation Project with schematics of all logic blocks in your design
(submitted electronically)

2. Test script demonstrating that your design works (submitted electronically)
3. A report file that specifies resources used in the FPGA for the design—ie, the

number of CLBs/IOBs/etc used. Look under the “reports” tab in Xilinx
foundation. Summarize and discuss the results in your README in one
paragraph (submitted electronically)

4. Extract timing information for the design as demonstrated in lecture and submit
the file. The “Analyze against Auto Generated Design constraints…” button in
the Xilinx Timing Analyzer tool will provide the values needed. Summarize and
discuss the results in your README in one paragraph (submitted electronically)

5. Look at your design in the Xilinx FPGA Editor—be impressed it did all that
wiring and not you! ☺ (show your TA in lab section)

6. Readme file (submitted electronically—see below)

EE 121 Lab 3 Programmable Priority Encoder
Winter 2001

 Page 4

Lab Exercise

During lab time, you will get a chance to compile your design, download it onto your
Xilinx chip, and test it with real signals. There is no lab write-up for this lab. However,
you do need to demo your circuit to your TA, using any test values your TA desires.

Submission

As penance for all the paper we wasted on Lab 1, we will use electronic submission for
this and all future labs in this course. You do not need to print anything out. To submit
your lab electronically:

(0) Write a README file that contains your name, your partner's name, the name of the
project, and any information that the TAs should know when evaluating your design.

You should say whether or not you think your design completely meets the assignment's
requirements. If it does, tell us which script file(s) you used to prove to yourself that
your design worked.

If your design doesn't work, explain your approach and what problems you've
encountered. List each major component, whether or not you think it works, and what
script file(s) you used to verify them. Identify what component(s) or what stage of
integration does not work.

Designs without any README file will lose points. But if your design passes both your
tests and ours, then we will not expect any analysis of your design in the README file.
A simple file with the basic information (names, project name, whether you think it
works, and the name of a script file) is all that is necessary if your design is fully
functional. If it is not, however, the README file is very important. Non-functional
designs without README files will almost certainly receive very poor grades; non-
functional designs that clearly identify what works and what does not may receive
substantial partial credit. (depending, of course, on exactly how much is working)

(1) Choose Project->Clear Implementation Data from the Project Manager to remove all
the implementation-related files that we don't need to see.
(2) Choose File->Archive Project. Set the Compression Factor to Max. Do not give your
archive a password. Then click Next.
(3) Accept the default choice of archiving the entire project. Click Next.
(4) Add any extra files outside your project directory that you want to add to your
archive. Usually, you won't need to add any. Then click Finish. A Zip file with your
project's name will appear in the directory one level above your project directory. This is
your archived project.
(5) Submit your archived project in one of the following ways:

(a) Drop it in the "submit" directory of your Z drive on the ee121-server. You
will need to use one of the computers in Packard 128 to access your submit directory.

EE 121 Lab 3 Programmable Priority Encoder
Winter 2001

 Page 5

You will be able to write to the submit directory but not modify or delete any of the files
in it. If you need to re-submit your project, you must copy a new archive into the submit
directory.

(b) E-mail your archived project as an attachment to the TA who heads your lab
section: Joel Coburn (jcoburn@stanford.edu) for Tuesday night, Frederic Sarrat
(fsarrat@stanford.edu) for Wednesday afternoon, James Nielsen (jfn@stanford.edu) for
Wednesday night, or Lee Kenyon (lakenyon@stanford.edu) for Thursday night.

Remember, you must submit your project electronically, whether or not it works
correctly, before 9:30 AM on the due date or you will receive no credit.

	Programmable Priority Encoder
	Prelab Due Date: Tuesday, January 29, 2001 at 9:30am

	Overview
	
	
	Laboratory Requirements
	Lab Exercise
	Submission

	Remember, you must submit your project electronically, whether or not it works correctly, before 9:30 AM on the due date or you will receive no credit.

