
EE121 Handout # 3 Lab 1 Page 1 of 8
Winter 2001-02

Lab 1
Foundation Familiarity

Due Date: Tuesday, January 15 at the beginning of class
To be completed individually

1 Objectives

• Install Foundation on your home PC and/or locate the computer cluster in Packard 128
• In order to use the computers in Packard 128, you will need a class computer account and an

SUID with access permission.
• Become familiar with the Foundation software package:

• Foundation Project Manager – creates/manages projects
• Foundation Schematic Editor
• Foundation Logic Simulator – graphical schematic simulator

• Create schematics and macros within a new project
• Simulate your schematics

2 Start Foundation
From the Start menu, launch Xilinx Foundation Project Manager. Select ‘Create a New Project’

and hit OK. Name the new project ‘Lab1’, select flow to be schematic, choose Spartan2 from the left
pop-up menu, and choose 2S100TQ144 from the middle pop-up menu. The Xilinx Spartan
2S100TQ144 FPGA is the programmable logic device that will be used throughout EE121, and thus all
projects should be of this type.

Once the new project has been created and loaded, you will see a list of the project files on the left
and a set of buttons on the right. Launch the schematic editor by pressing the schematic editor button
in the design entry group on the right. The schematic editor contains a drawing region in the center
and buttons on the top and left. The buttons on the left are for selecting and drawing.

3 XOR Gate

Create an XOR gate using Figure 1 as a guide.

3.1 Creating an XOR Gate

First add the components that will be needed (2 INV gates, 2 AND2 gates, and 1 OR2
gate). To add a component, first press the ‘Symbols Toolbox’ button on the left. This brings up a
new window containing a list of available components. Next choose the desired component from
the list, place the component in the drawing area by clicking in the drawing area, and then right
click and choose ‘Select/Drag Mode’ when done. Do this for all 5 needed gates.

After adding all the components, the next step is to add the inputs and outputs. There
will be two inputs, X and Y, and one output, Z. To add an input/output, press the ‘Hierarchy
Connector’ button, name the terminal, and choose a terminal type (i.e. input or output). Do this
for both inputs and the output.

With the components and inputs/outputs in place, the next step is to add wires. To add a
wire, press the ‘Draw Wires’ button, then in the drawing area click on one of the two terminals
you want to connect with a wire and then click on the other. You can use the ‘Select and Drag’
tool (the arrow button on the left) to move and stretch wire segments. Using Figure 1, wire up the
components of the XOR gate.

Finally, label the internal nodes of the XOR gate. To label an internal node, double click
on the wire and then give the node a name. Do this for the 4 internal nodes (name them X_L,
Y_L, XNY, and XYN as in Figure 1). Always label the internal nodes of a schematic.

EE 121 Handout # 3 Lab 1 Page 2 of 8
Winter 2001-02

 Page 2 of 8

Figure 1. XOR Gate Schematic.

Save the schematic by choosing “Save As” from the File Menu and naming the file
XORgate.sch. Note that if you just choose “Save” or press Ctl-S the first time you save your
file, Foundation will assign the file a name automatically, and the automatic name probably won’t
be very revealing. Print the schematic. You can adjust the page size of your schematic by
choosing ‘File:Page Setup’ and then selecting a sheet format. Choose a sheet size that is just large
enough for your schematic so that the print out will be readable (i.e. not a print out of a very large,
mostly unused sheet).

3.2 Simulating the XOR gate

 To verify that the XOR gate functions as it should, you must simulate it. To launch the
 simulator, press the ‘Simulator’ button at the top (in the schematic editor). In the Logic Simulator
 there are 2 rows of buttons at the top, a list of signals down the left side, and the signal
 waveforms directly to the right of the signal list.

Simulating the Old-Fashioned Way

To simulate the XOR gate, first choose a step size of 1 ns (popup menu on top) and
choose 1 ns/div (directly above the signal list, the two buttons on the left and right increase or
decrease the time per division). Also, set the simulation type to functional using the popup menu
in the first row of buttons at the top.

Next, add the desired signals by choosing ‘Signal:Add Signals’ and double click on the
signals that you want to see simulated (X, Y, Z, X_L, Y_L, XNY, XYN). Then click on close.

In order to simulate the XOR gate, you have to apply different combinations of inputs
and observe the output. To set the state of an input, select the signal by clicking on it in the signal
list, then click on the ‘Logical States’ button in the second row of buttons at the top. Then choose
the state of the input (i.e. high or low), and then click on close.

Once all the inputs are assigned a state, you can simulate one step by clicking the
‘Simulation Step’ button in the first row of buttons at the top. Then observe the output to make
sure it is correct.

Verify the truth table and print the simulation results. Your simulation results should be
the signal traces in the graphical Waveform Viewer; the simulator does not generate truth tables.

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Next, use the simulator to observe the result of changing the inputs from X=0, Y=0 to

X=1,Y=1. Do this first with the simulation type set to functional, and then with the simulation
type set to unit. The simulation type unit adds a unit delay to the output of each gate. You should

EE 121 Handout # 3 Lab 1 Page 3 of 8
Winter 2001-02

 Page 3 of 8

see a glitch (a short fluctuation in the output) when the XOR gate is simulated with unit delays.
Explain why the glitch occurs and print the simulation results.

Try out the built-in counter as a means of generating continuously changing test inputs.
Press the ‘Select Stimulators’ button on the bottom row of buttons at the top. This brings up a
window showing the different stimulators built into the simulator. The row of LEDs next to the
label ‘Bc’ represents the 16 bits of the built-in 16-bit counter. You can assign these bits to the
signals you are simulating as a means of generating test inputs. Select X from the signal list and
then press on the rightmost LED of the Bc row. This assigns B0 to X. Now assign B1 to Y, and
press close. Next, go to ‘Options:Preferences’ and under the simulation tab make sure that the B0
frequency is 500 MHz and the B0 period is 2ns. Click on OK, then use the ‘Simulation Step’
button to step through the different test inputs generated by the counter. This is a useful technique
for debugging, especially when there are a lot of inputs.

Simulating with Scripts

Writing a simulation script is usually more efficient than simulating by hand. Scripts

allow you to automate repetitive testing tasks and spare you the work of adding and stimulating
your signals each time you test a circuit. You can write your script in any text editor, or use the
built-in script editor by choosing Tools->Script Editor from the Foundation Logic Simulator and
clicking “Create Empty Script.” For a full list of simulation commands, choose Help->Simulation
Macros Help from the Script Editor.

Here’s an example script that performs the same tests we did by hand. Lines beginning

with “|” are comments.

| EE121
| Script to test the XOR gate in Lab 1

| Issue some initialization commands
delete_signals
restart
greset
| Simulate in functional mode
set_mode functional
| Set the stepsize; i.e., the default simulation time interval
stepsize 1 ns
| Set the simulation precision...increasing precision time
| decreases timing accuracy but speeds up the simulation.
| Defaults to 100 ps.
sim_precision 125 ps
| Add signals to the watch window.
Watch X Y Z X_L Y_L XNY XYN

| Test the truth table
assign X 0
assign Y 0
| The sim command runs the simulation for one step size.
sim
assign X 0
assign Y 1
sim
assign X 1
assign Y 0
sim
assign X 1
assign Y 1

EE 121 Handout # 3 Lab 1 Page 4 of 8
Winter 2001-02

 Page 4 of 8

sim

| Test the transition from all 0's to all 1's in functional mode.
assign X 0
assign Y 0
sim
assign X 1
assign Y 1
sim

| Test the transition from all 0's to all 1's in functional mode.
set_mode unit
assign X 0
assign Y 0
sim
assign X 1
assign Y 1
sim

| Use counters
| At 8 ns, assign 0 to X, then increment X (modulo 2) every 2ns 8
times
wfm X @8ns = 0 (2ns = inc by 1) * 8
| At 8 ns, assign 0 to Y, then increment Y (modulo 2) every 4ns 4
times
wfm Y @8ns = 0 (4ns = inc by 1) * 4
sim 16ns

The script might not seem useful with such a small design, but as your designs become
larger you will find them essential.

3.3 Creating a XOR gate macro
In order to use a schematic easily within another schematic, it is best to create a symbol

macro. To create a macro out of the XOR gate schematic, select ‘Hierarchy:Create Macro Symbol
from Current Sheet’ from the schematic editor. The symbol name should be XORgate, the inputs
should be X and Y, and the output should be Z. Verify this, then click OK. You can now use the
XOR gate in other schematics by selecting it from the components list.

4 FullAdder

Create a new schematic called ‘FullAdder’ using Figure 2 as a guide. You will have to use the
XOR gate macro that you created. The inputs are A, B, and CIN (carry in) and the outputs are S and
COUT (carry out). Make sure you label the internal nodes AXORB, AB, ACIN, and BCIN. After you
have created the schematic, create a macro from the schematic and name it ‘FullAdder’.

EE 121 Handout # 3 Lab 1 Page 5 of 8
Winter 2001-02

 Page 5 of 8

Figure 2. FullAdder schematic.

Simulate the schematic and verify the truth table below (functional-mode simulation) with a script.

Make sure you always include internal nodes in your simulation. Also, make sure that FullAdder.sch
is the only schematic listed in the main Project Manger window (i.e. the only schematic in your
project). Including more than one schematic in a project can confuse the simulator causing errors; thus
it is a good idea to always include only 1 schematic (the main top-level schematic) in your projects.
All other (lower-level) schematics should be converted to and included as macros. To remove a
schematic, right click on it in the list of project files and select ‘Remove’. To add a schematic, right
click on the project name in the list of project files and select ‘Add’.

Alternatively, you can simulate a macro by choosing File->Simulate Single Component from the

Simulator.

A B CIN S COUT
1 1 1 1 1
1 1 0 0 1
1 0 1 0 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0
0 0 1 1 0
0 0 0 0 0

After verifying the truth table above, print the simulation results.

5 4-bit Adder

Create a new schematic called ‘Adder4’ using Figure 3 as a guide. In this schematic you will be
using buses. A bus is an array of signals, and is displayed as a thicker line than a regular wire. When
using a bus, the naming convention is to give the bus a name in the form of bus_name[X:Y], where
bus_name is the variable name and X is the most significant bit and Y is the least significant bit.
Individual signals in the bus are named bus_nameN where N is between X and Y. Individual signals
can be accessed by wiring a regular wire from a bus to a terminal and giving the internal node the

EE 121 Handout # 3 Lab 1 Page 6 of 8
Winter 2001-02

 Page 6 of 8

name corresponding to the desired signal (or by using the ‘Draw Bus Taps’ tool, try it to see what it
does).

After creating the ‘Adder4’ schematic, simulate the 4-bit adder with a script for a few different
additions using both hexadecimal and decimal notation (functional-mode simulation). Again, only one
schematic should be listed in the main project window. At this point, Adder4.sch is the main top-level
schematic and thus should be the only schematic file listed.

You might find the following simulation commands useful:

| Add the busses A[3:0] and B[3:0] to the watch window
vector A A3 A2 A1 A0
vector B B3 B2 B1 B0
watch A B

| Change A and B to decimal
radix dec A B
| Change A and B to hexadecimal
radix hex A B

| Assign hexadecimal values to A and B
assign A 2\h
assign B C\h

| Stimulate A, B and CIN with a pattern
pattern A 0\h D\h 7\h 5\h F\h
pattern B 6\h F\h 8\h 3\h 0\h
pattern CIN 0 0 1 1 1
(sim) * 5

Print the simulation results.
Make a macro out of Adder4.

EE 121 Handout # 3 Lab 1 Page 7 of 8
Winter 2001-02

 Page 7 of 8

Figure 3. Adder4 schematic.

6 16-bit Adder
Create a new schematic called ‘Adder16’ using Figure 4 as a guide. In this schematic you will

learn how to pull a piece of a bus out of a bus (e.g. A[7:4] out of A[15:0]). Write a script to simulate
the 16-bit adder using decimal numbers and check the results for correctness (functional mode). Print
the simulation results. Next, simulate the 16-bit adder in unit-delay mode. In particular, simulate the
case where all inputs are 0 transitioning to all 1s. Print and explain the results.

EE 121 Handout # 3 Lab 1 Page 8 of 8
Winter 2001-02

 Page 8 of 8

Figure 4. Adder16 schematic.

7 Summary (What to turn in)

1. XOR gate schematic
2. XOR gate simulation results

a. truth table verification
b. inputs transitioned from 0s to 1s (both functional and unit-mode simulations)
c. explanation of glitch in unit-mode simulation.

3. 1-bit adder simulation results (verification of truth table) and script
4. 4-bit adder simulation results (additions using both decimal and hexadecimal numbers) and script
5. 16-bit adder simulation results and script

a. addition using decimal numbers in functional-mode
b. addition resulting when inputs are transitioned from 0s to 1s in unit-mode
c. explanation of the simulation results in unit-mode

	Simulating the Old-Fashioned Way
	Simulating with Scripts

