
Clocked synchronous state machine example
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Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/eSetup and hold times requirements for state flip-flops must be satisfied.
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Clocked synchronous state machine timing

CLOCK

flip-flop
outputs

flip-flop
inputs

combinational
outputs

tH

tcomb

tsetupsetup-time margin

tL
tclk

tffpd

thold
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Digital Design Principles and Practices, 3/eTiming margin equation: tclk ≥ tffpd + tcomb + tsetup

Setup time margin = tclk − tffpd − tcomb − tsetup
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Satisfying timing requirements

The setup time margin can be made positive by making tclk large enough.

Simple solution: slow down the system.

Hold time requirement is independent of system clock.

• Guarantee that minimum combination logic delay is larger than hold time:

tffpd + tcomb ≥ thold

Note that manufacturer’s minimum delay specifications are needed.

• Use “good” flip-flops (hold time ≤ 0)

• Kludge: add delay to guarantee proper operation.

• Important: avoid clock skew.
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Hold times

To guarantee that shift registers work, hold time thold must be smaller than
flip-flop propagation delay tffpd.
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From DDPP Table 8-1, 74FCT273 has min tffpd = 2 and thold = 1.5.

Early (’70s) databooks listed “typical” but not minimum propagation delays.
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Clock skew example

All flip-flops in clocked synchronous state machine should be clocked at the
“same” time. Violating this rule may result in hold time violations.
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“Same” time means that difference between active edges should be small
compared to hold time.

Clock rise and fall times should be short, in case flip-flops respond to different
voltage levels. (Use similar flip-flops when possible.)
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Clock distribution

In real systems (such as Xilinx XCS200) clock distribution is an important
consideration. Goal: simultaneous clocking of all flip-flops.
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Master clock must be buffered through a tree so that slave clocks have same
delay. (Done for you in Xilinx FPGAs.)
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Clock distribution

On a printed circuit board, clock traces are laid out to minimize discrepancies.
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Cultural note: high performance ECL boards were laid out so that all signals
traveled over traces with same length.
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Don’t gate the clock!

How not to gate the clock:
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Digital Design Principles and Practices, 3/eAn “acceptable” way to gate the clock (reduces clock skew). Not in EE 121.
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Asynchronous inputs

Very simple synchronizer circuit:
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Digital Design Principles and Practices, 3/eThis works most of the time (failure rate proportional to system clock).
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Asynchronous inputs: multiple synchronizers
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Sample an asynchronous signal at one place in your circuit. Otherwise, system
might see inconsistent values of input.
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Asynchronous inputs: subtle problem

We might indirectly get two views of a variable.
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Solution: synchronize the variable for supplying it to combinational logic.
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Metastability

What can go wrong when we sample data during the decision window:
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Duration of metastable outputs: MTBF(tr) =
exp(tr/τ)
To · f · a

“MTBF” is mean time between failure; f = flip-flop clock frequency;
a = asynchronous input changes per second; To and τ are parameters
depending on flip-flop technology.
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Synchronizers

Two-level synchronizer:
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Multiple-cycle synchronizer:
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State machine decomposition

Important logic design principle: break down the problem into

• simple(r) components, with

• simple (and well understood) connections between components

Typical master controller and subordinate state machine and concrete
example:
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Asynchronous serial communications
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State machine decomposition

Improved receiver state machine: move states from master controller to
counter.
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Simplified master controller has only four states, IDLE, START, DATA, STOP.
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