Clocked synchronous state machine example
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Setup and hold times requirements for state flip-flops must be satisfied.
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Clocked synchronous state machine timing
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Timing margin equation: tu, > tipa + teomb T Lsetup

Setup time margin = g — tipa — Leomb — Lsetup
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Satisfying timing requirements

The setup time margin can be made positive by making t. large enough.

Simple solution: slow down the system.

Hold time requirement is independent of system clock.

e Guarantee that minimum combination logic delay is larger than hold time:

tffpd _|_ tcomb Z thold

Note that manufacturer's minimum delay specifications are needed.
e Use “good"” flip-flops (hold time < 0)
e Kludge: add delay to guarantee proper operation.

e Important: avoid clock skew.
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Hold times

To guarantee that shift registers work, hold time t,,; must be smaller than
flip-flop propagation delay s,q.
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From DDPP Table 8-1, 74FCT273 has min 4,4 = 2 and t,,q4 = 1.5.

Early ('70s) databooks listed “typical” but not minimum propagation delays.
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Clock skew example

All flip-flops in clocked synchronous state machine should be clocked at the
“same” time. Violating this rule may result in hold time violations.
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“Same” time means that difference between active edges should be small
compared to hold time.

Clock rise and fall times should be short, in case flip-flops respond to different
voltage levels. (Use similar flip-flops when possible.)
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Clock distribution

In real systems (such as Xilinx XCS200) clock distribution is an important
consideration. Goal: simultaneous clocking of all flip-flops.
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Master clock must be buffered through a tree so that slave clocks have same
delay. (Done for you in Xilinx FPGAs.)
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Clock distribution

On a printed circuit board, clock traces are laid out to minimize discrepancies.

CLOCK
1
— 1D Q Q D Q
PCLK [ FF1 1—> ok |2 | [ ]
I— > CLK
| l |
> CLK > CLK
—‘ > CLK P CLK
D Q D Q D Q—
> CLK > CLK > CLK
> CLK > CLK

Cultural note: high performance ECL boards were laid out so that all signals
traveled over traces with same length.
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Don’t gate the clock!

How not to gate the clock:
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An “acceptable” way to gate the clock (reduces clock skew). Not in EE 121.

(@) all in same

/ IC package
0:@7 CLOCK (b)

CLOCK L —e CLOCK_L _\ ,_\ ,_\ ,_\_
CLKENL :Di e coc | [ \_|/ T\ [\ S
CLKEN2 ’:®7 etk CLKEN | / \ [ ] \_

|

\
GCLK3 GCLK \_ J \_

CLKEN3

:

November 5, 2002 EE 121: Digital Design Laboratory Lecture 11-38



Asynchronous inputs

Very simple synchronizer circuit:
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This works most of the time (failure rate proportional to system clock).
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Asynchronous inputs: multiple synchronizers

synchronizers
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Sample an asynchronous signal at one place in your circuit. Otherwise, system
might see inconsistent values of input.
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Asynchronous inputs: subtle problem

We might indirectly get two views of a variable.

Combinational logic synchronizers
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Solution: synchronize the variable for supplying it to combinational logic.
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Metastability

What can go wrong when we sample data during the decision window:
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Duration of metastable outputs: MTBF(¢,.) = exp(tr/7)
T, - f-a
“MTBF" is mean time between failure; f = flip-flop clock frequency;

a = asynchronous input changes per second; T, and 7 are parameters
depending on flip-flop technology.
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Synchronizers

Two-level synchronizer:
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Multiple-cycle synchronizer:
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State machine decomposition
Important logic design principle: break down the problem into
e simple(r) components, with
e simple (and well understood) connections between components

Typical master controller and subordinate state machine and concrete
example:
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Asynchronous serial communications
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State machine decomposition

Improved receiver state machine: move states from master controller to
counter.
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Simplified master controller has only four states, IDLE, START, DATA, STOP.
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