

State machine design

- 0. Specify desired behavior of machine unambiguously (often hardest step).
- 1. Construct state/output table (or draw a state diagram, often preferable).
- 2. Minimize the number of states (optional).
- 3. State assignment: choose state variables and assign values to named states.
- 4. Form transition/output table from state/output table using state values.
- 5. Choose flip-flop type. Answer: D flip-flops
- 6. Construct excitation table (not needed for D flip-flops)
- 7. Derive excitation equations from excitation table.
- 8. Derive output equations from transition/output table.
- 9. Draw logic diagram of next-state logic (or provide equations to CAD tools).

October 31, 2002

Shift registers

Shift registers are the second most important sequential circuit building block. (Counters are first; registers don't count.)

Applications of shift registers:

- serial-to-parallel converters
- parallel-to-serial converters
- delay
- counters

Classifications of shift registers:

- serial-in vs. parallel-in
- serial-out vs. parallel-out
- unidirection vs. bidirectional

"Universal" shift register = parallel-in, parallel-out, bidirectional.

October 31, 2002

Lecture 10-4

Control signals for 74x194 universal shift register

Only two control inputs (compared to four for 74x163) requires that four actions be encoded into two bits.

Table 8-18		Inp	Inputs		Next state			
74x194 4-bit universal shift register.	Function	S 1	S 0	QA*	QB*	QC*	QD*	
	Hold	0	0	QA	QB	QC	QD	
	Shift right	0	1	RIN	QA	QB	QC	
	Shift left	1	0	QB	QC	QD	LIN	
	Load	1	1	А	В	С	D	
)ata signals are n nputs are LIN, RI	amed with let N.	tters (A	, B, C,	D, QA,	QB, Q	C, QD). Serial	
Convention used:	D is on the r	ight, LII	V is inp	out when	shiftin	g left.		
		0	·			0		

Linear feedback shift register counters

Cheap counters can be built using shift registers and a small amount of logic.

