
	Topics for Lecture #9	
• Reminder: midte	erm examination $\#1$ next Tuesday starting	g at 9:30am.
button push ppulse stretche	button push detector (continued) processor r	
	re for state machine design tions, examples, applications	
October 24, 2002	EE 121: Digital Design Laboratory	Lecture 9–1
	Button input processor	

Requirement: output a pulse of duration one clock period in response to each input pulse.

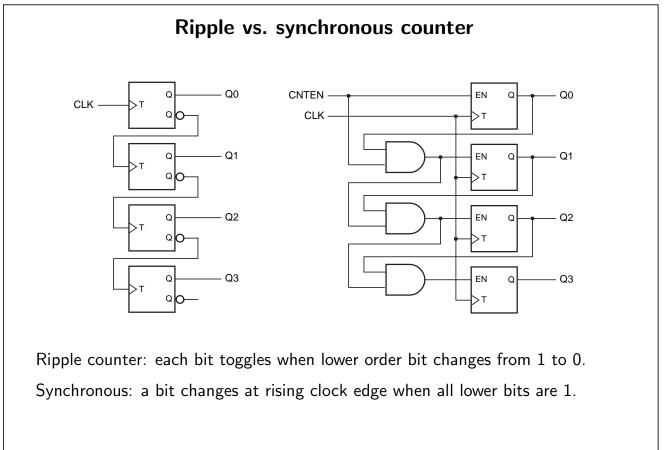
Example of desired behavior.

CLK	
IN	
OUT	
	ashed pulse corresponds to an ambiguity in the specifications: how this state machine respond to consecutive short input pulses?
	e applications consecutive pulses will not or should not occur, so this ility can be ignored.

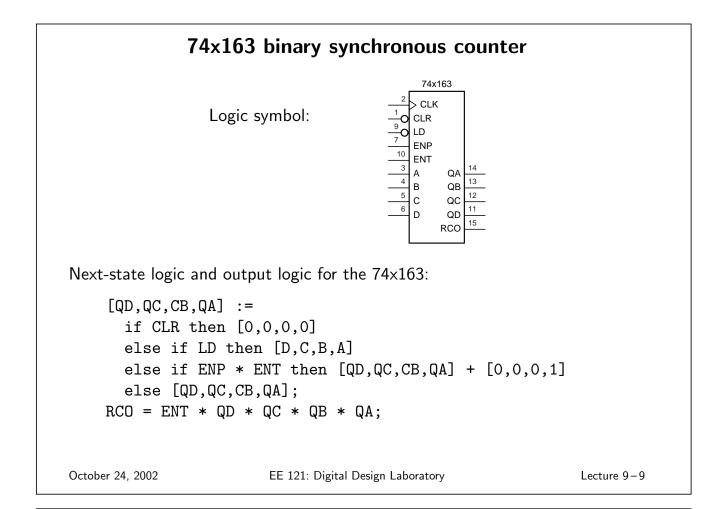
	Button input processor (2)	
State machines and	transition/output tables.	
October 24, 2002	EE 121: Digital Design Laboratory	Lecture 9-3
	Pulse stretcher	
Requirement: each i	nput pulse produces a 4-clock output pul	se.
Example of desired I	behavior:	
IN		
OUT		
These specifications output pulses be lon	are also ambiguous: is the output <i>retrigg</i> ger than 4 clocks?	gerable? Can
October 24, 2002	EE 121: Digital Design Laboratory	Lecture 9–4

- 0. Specify desired behavior of machine unambiguously (often hardest step).
- 1. Construct state/output table (or draw a state diagram, often preferable).
- 2. Minimize the number of states (optional).
- 3. State assignment: choose state variables and assign values to named states.
- 4. Form transition/output table from state/output table using state values.
- 5. Choose flip-flop type. Answer: D flip-flops
- 6. Construct excitation table (not needed for D flip-flops)
- 7. Derive excitation equations from excitation table.
- 8. Derive output equations from transition/output table.
- 9. Draw logic diagram of next-state logic (or provide equations to CAD tools).

October 24, 2002



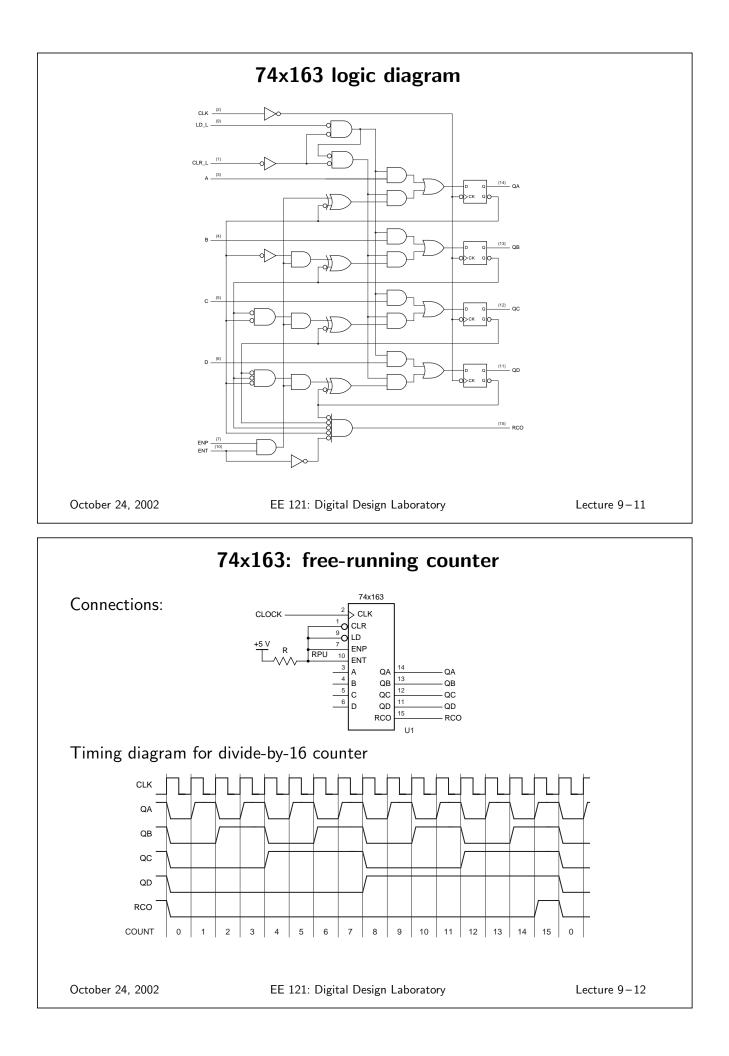
- Real time clock: cycle through a sequence of states in a known order. State encodings: binary, BCD = binary coded decimal, Gray.
- Frequency divider: output a period signal at a fraction of input frequency.
- Event counter: increment state each time a signal or Boolean function is true (on rising edge of clock).
- Interval timer: count number of clock pulses between start and stop signals
- Alarm clock: activate an alarm signal at a specified time in the future.
- Delay: activate a timeout signal after a specified number of clock cycles.

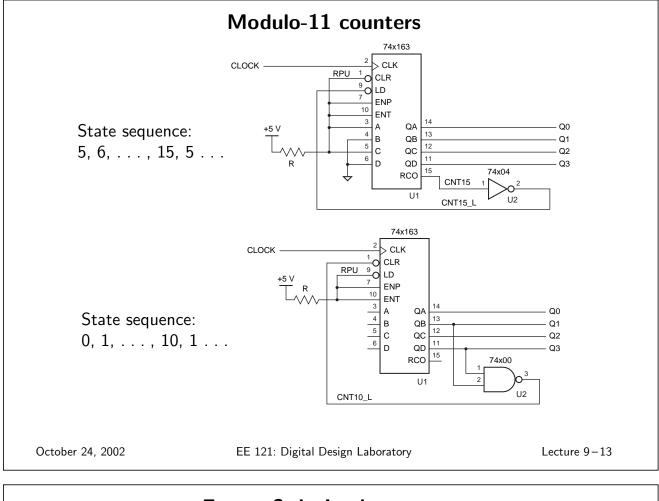

October 24, 2002

EE 121: Digital Design Laboratory

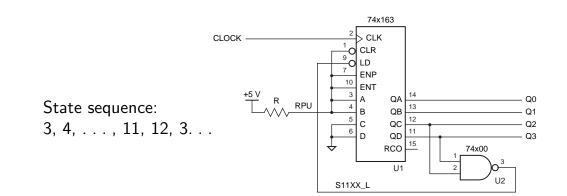
Lecture 9-7

October 24, 2002

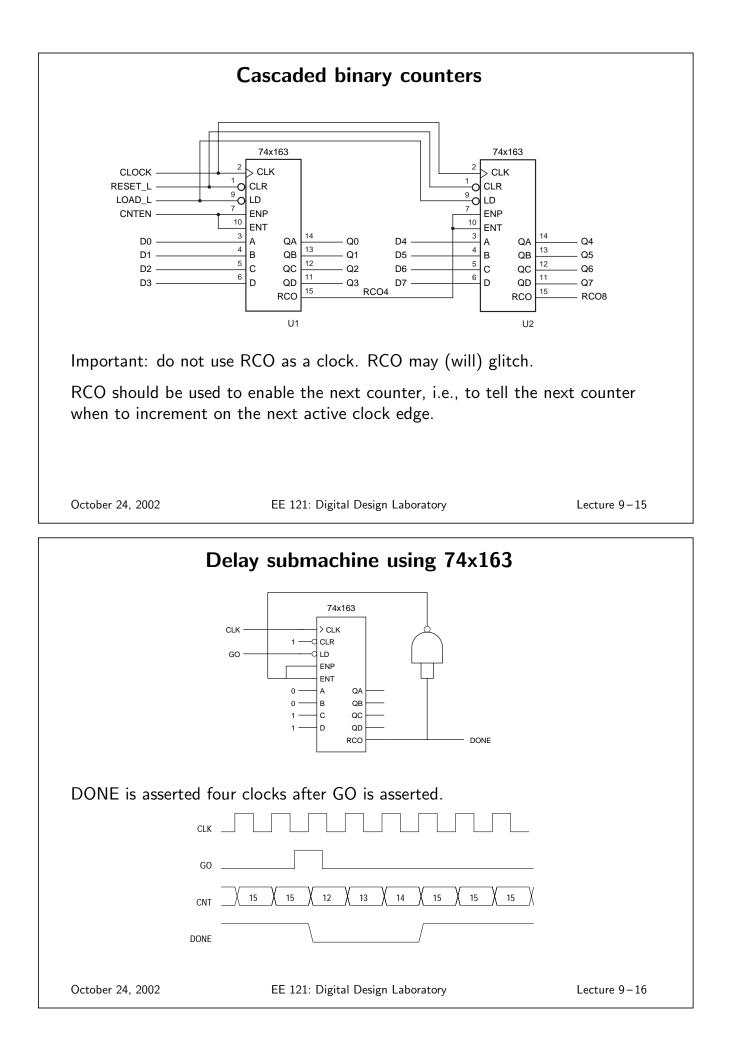

74x163 state table


Inputs					Current State				Next State				
CLR_L	. LD_	L EN	IT EI	NP	QD	QC	QB	Q,	ł	QD*	QC*	QB*	QA*
0	х	x	3	ĸ	х	x	х	х		0	0	0	0
1	0	x	3	ĸ	х	х	x	x		D	С	В	А
	1	1	0	х		x	x	x	x	QD	QC	QB	QA
	1	1	х	0		x	х	х	х	QD	QC	QB	QA
	1	1	1	1		0	0	0	0	0	0	0	
	1	1	1	1		0	0	0	1	0	0	1	(
	1	1	1	1		0	0	1	0	0	0	1	
	1	1	1	1		0	0	1	1	0	1	0	
	1	1	1	1		0	1	0	0	0	1	0	
	1	1	1	1		0	1	0	1	0	1	1	
	1	1	1	1		0	1	1	0	0	1	1	
	1	1	1	1		0	1	1	1	1	0	0	
	1	1	1	1		1	0	0	0	1	0	0	
	1	1	1	1		1	0	0	1	1	0	1	
	1	1	1	1		1	0	1	0	1	0	1	
	1	1	1	1		1	0	1	1	1	1	0	
	1	1	1	1		1	1	0	0	1	1	0	
	1	1	1	1		1	1	0	1	1	1	1	
	1	1	1	1		1	1	1	0	1	1	1	
	1	1	1	1		1	1	1	1	0	0	0	

October 24, 2002


EE 121: Digital Design Laboratory

Lecture 9-10



Excess-3 decimal counter

With one 3-input NAND gate, any period between 1 and 16 can be obtained. In fact, any low and high values can be specified.

Drawback of 74x163: counts up only. Use 74x169 for bidirectional counting.

