FPCVT in software

```
FRAC <<= EXP;</pre>
              if (SIGN == 1) {
                FRAC = -FRAC; /* 12-bit two's complement */
              }
or
              for (i = 0; i < EXP; i++) {</pre>
                FRAC <<= 1; /* multiply by 2 */
              }
or
              switch (EXP) {
              case 1: FRAC <<= 1; break;</pre>
              case 2: FRAC <<= 2; break;</pre>
              . . .
              case 7: FRAC <<= 7; break;</pre>
              }
October 17, 2002
                              EE 121: Digital Design Laboratory
                                                                              Lecture 7-1
```


Bistable elements

Sequential circuits require memory. Possible storage devices:

- mechanical position (requires solenoids or motors to change)
- magnetic charge
- charge on capacitors (may require sense amplifiers)
- feedback loops in logic circuit:

There are two solutions to system of equations, $Q_L = Q', Q = Q_LL'$: $Q_L = 0, Q' = 1$ or $Q_L = 1, Q' = 0$

State can be changed by setting input to a value for
$$\geq$$
 two gate delays.

October 17, 2002

EE 121: Digital Design Laboratory

```
Lecture 7-3
```

Metastability There are *metastable* states between stable states (continuity argument). V_{out1} $= V_{in2}$ Transfer function: metastable $V_{\text{out1}} = T(V_{\text{in1}})$ $V_{\text{out2}} = T(V_{\text{in2}})$ stable $\overline{V_{\text{in1}}} = V_{\text{out2}}$ Changing state of a bistable requires energy and time. Insufficient driving force results in metastable state (or oscillation). metastable stable stable October 17, 2002 EE 121: Digital Design Laboratory Lecture 7-4

D latch

Simplest memory device is D latch: if C then D else Q

Implementation using multiplexer built from NAND gates:

The multiplexer circuit has a hazard, which can cause failure.

Moral: let experts design the basic memory cells (latches and flip-flops).

October 17, 2002

EE 121: Digital Design Laboratory

Lecture 7-5

Flip-flops

D latches are *transparent*: D = Q while C = 1.

- Advantage: input changes can be seen immediately at output
- Disadvantage: output changes when input changes (while C = 1).

Desired behavior for a memory device: stored value changes only at discrete time instants, determined by rising or falling edges of *clock* signal.

D flip-flop: implementation

One circuit design for a D flip-flop uses two D latches.

 O
 I
 I
 I
 I

 Image: Comparison of the state of the s

Correct behavior is guaranteed if data is stable during a window surrounding the active clock edge:

- $t_{setup} = time before clock edge$
- $t_{hold} = time after clock edge$

Lab #4: Auxiliary components
• 3-bit register stores state of system (last winning request).
 Seven-segment nexadecimal displays: Used for observing system. Two identical components Simple combinational logic can be represented by a table (ROM).
• 3-to-8 decoder displays winning request. In a real system, the output would acknowlege request and initiate further action.
October 17, 2002 EE 121: Digital Design Laboratory Lecture 7–15
Lab #4: Programmable Priority Encoder
3 LOWP[2:0] REQ 8 IREQ[7:0] WIN[2:0] 4 CNT[3:0] 4

- REQ is active low for historical reasons
- REQ is redundant since CNT is available, butit simplifies control of state memory flip-flops
- The main priority encoder output WIN[2:0] can be formed by multiplexing 8 priority encoders.