
EE 121 October 10, 2002
Digital Design Laboratory Handout #10

Laboratory Assignment #3

Floating Point Conversion

Due date: Friday, October 18. Prelab due: Tuesday, October 15

For this laboratory assignment, you will use Xilinx Foundation software to design and
test a combinational circuit that converts a 12-bit linear encoding of an analog signal into
a companded 8-bit floating-point (FP) representation. You will use the Xilinx Foundation
schematic editor to enter a hierarchical logic design of the circuit, which you will test by
simulating it under Xilinx Foundation.

The logic symbol for this floating-point encoder is shown below.

D[11:0]

FPCVT
S

E[2:0]

F[3:0]

Figure 1: FPCVT Logic Symbol

The pins of the FPCVT logic block have the following uses:

FPCVT Pin Descriptions
D[11:0] Input data in twos’-complement representation:

D0 is the least significant bit, D11 is the sign bit
S Sign bit of floating-point representation
E[2:0] 3-bit exponent of floating-point representation
F[3:0] 4-bit significand of floating-point representation

BACKGROUND

Analog signals are often converted to digital form for storage or transmission. A lin-
ear encoding using 8 bits can represent the unsigned number range {0, . . . , 255} or (using
twos’-complement representation) the signed range {−128, . . . , +127}. Seven or eight bits of
precision is adequate for intelligible speech or almost listenable music, but does not provide
sufficient dynamic range to capture both loud and soft sounds. Therefore nonlinear encod-
ings are used in most commercial systems. These encodings represent signals by numbers
that approximate the logarithms of the analog values. Two standard systems, µ-law PCM
and A-law PCM, are described briefly at the end of this handout.



2 EE 121, Autumn 2002-2003

For this laboratory assignment, we will use a simplified floating-point representation
consisting of one sign bit, a 3-bit exponent, and a 4-bit significand (also called the fraction
or, somewhat inaccurately, the mantissa):

7 6 5 4 3 2 1 0

S E M

The value represented by an 8-bit byte in this format is

V = (1 − 2S) · M · 2E .

The factor (1 − 2S) is a mathematical trick for stating that the value is negative (or zero)
when the sign bit is 1 and positive (or zero) when the sign bit is 0. The 4-bit significand M
ranges from 00002 = 0 to 11112 = 15, and the exponent ranges from 0002 = 0 to 1112 = 7.

The following table shows the values corresponding to several FP representations.

Floating Point Representation Examples
FP representation Formula Value

0 000 0000 +0 × 20 0

1 010 1010 −10 × 22 −40

0 011 0111 +7 × 23 56

0 010 1110 14 × 22 56

The last two rows of the above table demonstrate that some numbers have multiple FP
representations. The preferred representation is the one in which the most significant bit of
the significand is 1; this representation is said to be normalized.

It is quite straightforward to produce the linear encoding corresponding to a floating-point
representation; this operation is called expansion. This laboratory assignment is to build a
combinational circuit for the inverse operation, called compression. A device that performs
both expansion and compression is called a compander. The compression half of a compander
is more challenging because there are more input bits than output bits and therefore many
different linear encodings must be mapped to same floating-point representation. Values
that do not have FP representations should be mapped to the closest FP encoding; this
process is called rounding.

To simplify the conversion procedure, first consider the 12-bit linear encoding of a non-
negative number. The sign bit D11 is 0, and the remaining bits D[10:0] encode an integer
in the range 0 . . . 2047. Large numbers have fewer leading zeroes than small numbers. The
FP exponent is determined by counting the number of leading zeroes (including the sign bit
D11), as shown in the following table.



Laboratory Assignment #3 3

Leading Exponent
Zeroes

1 7
2 6
3 5
4 4
5 3
6 2
7 1

≥ 8 0

The significand consists of the 4 bits immediately following the last leading 0. (When the
exponent is 0, the significand is the least significant 4 bits; these representations are called
denormalized.) For example, 42210 = 0001101001102 has three leading zeroes (including
the sign bit), so its exponent is 5 = 1012, and its significand is 1101, yielding the FP

representation 0 101 1101 . This FP representation expands to +13 × 25 = 416; the
number 422 cannot be represented exactly but with an error of about 1.5%.

The above procedure produces the correct FP representation for about half the linear
encodings, but it does not guarantee the most accurate representation. The circuit that you
will design is required to round the linear encoding to the nearest FP encoding. You should
use the simple rounding rule that depends only on the fifth most significant bit. If that bit
is 0, the nearest number is obtaining by truncation—simply use the four most significant bits.
But if the fifth bit is 1, the representation is obtained by rounding up—that is, adding 1.
The following table gives examples of rounding.

Rounding Examples
Linear Encoding FP Encoding Round

000000101100 0 010 1011 Down

000000101101 0 010 1011 Down

000000101110 0 010 1100 Up

000000101111 0 010 1100 Up

The rounding stage of the FP conversion can leading to an unpleasant complication.
When the maximum significand 1111 is rounded up, adding one causes an overflow ; the
result, 10000, does not fit in the 4-bit significand field. This problem is solved by dividing
the significand by 2, or right shifting, to obtain 1000, and increasing the exponent by 1 to
compensate. For example,

000001111101 → 0 3 10000 (Oops!) → 0 4 1000

In this example, 125 is converted to 8 × 24 = 128, which is indeed the closest FP number.
Note that the overflow possibility can be detected either before or after the addition of the
rounding bit. (Which method is easier?)



4 EE 121, Autumn 2002-2003

When rounding very large linear encodings, such as 2047 = 01111111112, the exponent
may be incremented beyond 7 to 8, which cannot be stored in the exponent field. One

solution to this problem is to use the largest possible FP representation 1 111 1111 . For
this lab assignment, you can employ an easier simpler solution: ignore the problem.

An overall block diagram for the floating-point conversion circuit is shown below.

Count

leading

zeroes

Extract

leading

bits

C
on

ve
rt

 2
s’

−
co

m
pl

em
en

t
to

 s
ig

n−
m

ag
ni

tu
de

F[3:0]fifth bit

exponent

significand

Rounding

ShiftAdd 1

Add 1

0 or 1

D[11:0]

E[2:0]

S

Figure 2: FPCVT block diagram

The first block converts the 12-bit twos’-complement input to sign-magnitude representa-
tion. Nonnegative numbers (sign bit 0) are unchanged, while negative numbers are replaced
by their absolute value. As explained in section 2.5 of DDPP, the negative of a number in
twos’-complement representation can be found by complementing (inverting) all bits, then
incrementing (adding 1) to this intermediate result. One problem case is the most nega-
tive number, −2048 = 100000000000; when complement-increment is applied, the result is
100000000000, which looks like −2048 instead of +2048. Ignore this case; it requires special
case handling by the rounding block as well.

The second block performs the basic linear to floating-point conversion. The exponent
output encodes the number of leading zeroes of the linear encoding, as shown in the table
above. The significand output is obtained by right shifting the most significant input bits
from 0 to 7 bit positions. What this means is that each bit of significand comes from one of 8
possible magnitude bits, and therefore the suggested implementation of the basic conversion
block uses 8-to-1 multiplexers.

The third block performs rounding of the floating-point representation. If the fifth most
significant bit of the intermediate FP representation is 1, the significand is incremented by 1;
if the significand overflows, it is right shifted one bit and the exponent is increased by 1.

PRELAB

1. What number has the FP representation 1 111 1111 ?

2. How many different FP representations correspond to the number 0 ?

3. Which numbers have FP representations of the form 0 010 xxxx ?



Laboratory Assignment #3 5

4. How many different FP representations correspond to the number 80 ?

5. How many bits are needed for the twos’-complement representation (linear encoding) of
numbers whose FP representations have a sign bit, 4 exponent bits, and 6 significand bits?

6. Our 8-bit FP format can represent at most 256 different numbers. But many numbers have
multiple representations. Exactly how many distinct numbers have FP representations?

7. (Bonus) Our FP representation is inefficient because the most significant bit of the signifi-
cand is 1 except for the denormalized numbers. The IEEE 754 standard 32-bit and 64-bit
floating point representations use a hidden bit, just to the left of the leftmost significand
bit. Suppose we use the same trick to increase the precision of our FP representation.

a. Find the modified FP representation of 256.

b. What number has the modified FP representation of 0 000 0000 ?

c. Trick question: How would you represent the number 0 in the modified representaton?

REQUIREMENTS

As penance for all the paper we wasted on Lab 1, we will use electronic submission for
this and all future labs in this course. You do not need to print anything out. To submit
your lab electronically:

1. Write a README file that contains your name, your partner’s name, the name of the
project, and any information that the TAs should know when evaluating your design.

You should say whether or not you think your design completely meets the assignment’s
requirements. If it does, tell us which script file(s) you used to prove to yourself that your
design worked.

If your design doesn’t work, explain your approach and what problems you’ve encountered.
List each major component, whether or not you think it works, and what script file(s)
you used to verify them. Identify what component(s) or what stage of integration does
not work.

Designs without a README file will lose points. But if your design passes both your
tests and ours, then we will not expect any analysis of your design in the README file. A
simple file with the basic information (names, project name, whether you think it works,
and the name of a script file) is all that is necessary if your design is fully functional. If
it is not, however, the README file is very important. Nonfunctional designs without
README files will almost certainly receive very poor grades; nonfunctional designs that
clearly identify what works and what does not may receive substantial partial credit,
depending, of course, on exactly how much is working.

2. Choose Project->Clear Implementation Data from the Project Manager to remove all
the implementation-related files that we don’t need to see.

3. Choose File->Archive Project. Set the Compression Factor to Max. Do not give your
archive a password. Then click Next.



6 EE 121, Autumn 2002-2003

4. Accept the default choice of archiving the entire project. Click Next.

5. Add any outside your project directory that you want to add to your archive; usually, you
won’t need to add any. Then click Finish. A Zip file with your project’s name will appear
in the directory one level above your project directory. This is your archived project.

6. Submit your archived project in one of the following ways:

a. Drop it in the ”submit” directory of your Z drive on the EE 121 server. You must use
one of the computers in Packard 128 to access your submit directory. You will be able
to write to the submit directory but not modify or delete any of the files in it. If you
need to re-submit your project, you must copy a new archive into the submit directory.

b. Email your archived project as an attachment to the TA who heads your lab section.

Your FPCVT design must use at least two levels of hierarchy, and you will probably find
that three levels are most useful. Your lowest-level schematics may use any of the gates
from the Xilinx Foundation XCS2S100 library, including basic gates, such as AND2 and INV,
and more complex parts, such as the MX8 1E 8-input multiplexer and the X74 148 8-input
priority encoder. (The X74 148 has active low inputs, so modifications or additions will be
needed it if is to be used for detecting the first 1.)

For this laboratory assignment, partners should work independently. Only
normal homework collaboration is permitted.

You must submit your project electronically, whether or not it works correctly, before
5:00pm on the due date or you will receive no credit.

Appendix: Standard Companded Representations

The floating-point representation used in this assignment is not actually used in standard
companded encodings. Its main drawback is that many numbers have multiple representa-
tions, so there are fewer than 256 representable numbers.

Two standard encodings are the µ-law PCM (“mu-law” pulse-coded modulation) used
in the North American telephone network and the A-law PCM used in European telephone
networks. Both µ-law and A-law PCM use 8-bit representations with a sign bit, 3 exponent
bits, and 4 mantissa bits.

The conversion formula for µ-law PCM, described in section 10.1.6 of DDPP,is

(1 − 2S) · (2E · (2M + 33) − 33) ,

which results in a range of {−8159, . . . , +8159} and minimum step size 2.

For A-law PCM, the minimum step size is also 2 but the range is {−4032, . . . , +4032}.
Exponent values (called segment codes) of 0 and 1 are used to represent the 32 numbers
{1, 3, . . . , 63}. Thus compared to µ-law PCM, A-law PCM has finer resolution for small
values but less dynamic range.

It should be noted that a common method for performing expansion to linear encoding is
by a lookup table stored in read-only memory (ROM). The combinational circuit approach
uses far fewer gates but requires more design effort.


