
EE 121 October 1, 2002
Digital Design Laboratory Handout #3

Laboratory Assignment #1
Introduction to Xilinx Foundation Design Software

Due date: Thursday, October 10, at the beginning of class
To be completed individually

1. Objectives
• Become familiar with the Xilinx Foundation software package:

o Project Manager: creates/manages projects
o Schematic Editor
o Logic Simulator: graphical schematic simulator

• Create schematics and macros for a new project
• Simulate your schematics

2. Create new project
Install Xilinx Foundation software on your home PC or locate the computer cluster in

Packard 128. You will need a class computer account and an SUID with access permission to
use the computers in Packard 128.

Launch Xilinx Foundation Project Manager. Select Create a New Project and hit
OK. Name the new project Lab1, select flow to be schematic, choose Spartan2 from the left
pop-up menu, and choose 2S100TQ144 from the middle pop-up menu. The Xilinx Spartan
2S100TQ144 programmable logic device will be used throughout EE121, and so all projects
should be of this type. Finally, choose a directory on drive Z: in which to store the project files.

Once the new project has been created and loaded, you will see a list of the project files on
the left and a set of buttons on the right. Launch the schematic editor by pressing the schematic
editor button in the design entry group on the right. The schematic editor contains a drawing
region in the center and buttons on the top and left. The buttons on the left are for selecting and
drawing.

3. XOR gate
Create an XOR gate using Figure 1 as a guide.

3. Creating an XOR Gate
First add the components that will be needed (two INV gates, two AND2 gates, and one OR2

gate). To add a component, first press the Symbols toolbox button on the left. This
brings up a new window containing a list of available components. Next choose the desired
component from the list, place the component in the drawing area by clicking in the drawing area,
and then right click and choose Select/Drag Mode when done. Do this for all five needed
gates.

After adding all the components, the next step is to add the inputs and outputs. The XOR
gate has inputs, X and Y, and one output, Z. To add an input/output, press the Hierarchy

Page 2 of 9 EE 121, Autumn 2002-2003

connector button, name the terminal, and choose a terminal type, i.e., input or output. Do
this for both inputs and the output.

Once the components and inputs/outputs are in place, the next step is to add wires. To add a
wire, press the Draw Wires button, then in the drawing area click on one of the two terminals
you want to connect with a wire and then click on the other. You can use the Select and
Dra’ tool (the arrow button on the left) to move and stretch wire segments. Using Figure 1,
wire the components of the XOR gate.

Finally, label the internal nodes of the XOR gate. To label an internal node, double click on
the wire and then give the node a name. Do this for the four internal nodes; name them X_L,
Y_L, XNY, and XYN as in Figure 1. Always label the internal nodes of a schematic.

Figure 1. XOR Gate Schematic.

Save the schematic by choosing Save As from the File menu and naming the file
XORgate.sch. Note that if you just choose Save or press Ctl-S the first time you save your
file, Foundation will assign the file a name automatically, and the automatic name probably
won’t be very revealing. Print the schematic. You can adjust the page size of your schematic by
choosing File:Page Setup and then selecting a sheet format. Choose a sheet size that is
just large enough for your schematic so that the printout will be readable and not a printout of a
very large, mostly unused sheet.

3.1. Simulating the XOR gate

To verify that the XOR gate functions properly, you must simulate it. To launch the
simulator, press the Simulator button in the top menu bar of the schematic editor. The Logic
Simulator has two rows of buttons at the top, a list of signals down the left side, and the signal
waveforms directly to the right of the signal list.

Simulating the Old-Fashioned Way

To simulate the XOR gate, first choose a step size of 1 ns (popup menu on top) and choose 1
ns/div (directly above the signal list, the two buttons on the left and right increase or decrease the
time per division). Also, set the simulation type to functional using the popup menu in the first
row of buttons at the top.

Laboratory Assignment #1 Page 3 of 9

Next, add the desired signals by choosing Signal:Add Signals and double click on
the signals that you want to see simulated (X, Y, Z, X_L, Y_L, XNY, XYN). Then click on close.

In order to simulate the XOR gate, you apply different combinations of inputs and observe
the output. To set the state of an input, select the signal by clicking on it in the signal list, then
click on the Logical States button in the second row of buttons at the top. Then choose
the state of the input (high or low), and then click on close. Once all the inputs have been
assigned a state, you can simulate one step by clicking the Simulation Step button in the
first row of buttons at the top. Observe the output to make sure it is correct.

Verify the truth table and print the simulation results. Your simulation results should be the
signal traces in the graphical Waveform Viewer; the simulator does not generate truth tables.

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Next, use the simulator to observe the result of changing the inputs from X=0, Y=0 to

X=1,Y=1. Do this first with the simulation type set to functional, and then with the simulation
type set to unit. The unit simulation type adds a unit delay to the output of each gate. You
should see a glitch (a short fluctuation in the output) when the XOR gate is simulated with unit
delays. Explain why the glitch occurs and print the simulation results.

Try the built- in counter as a means of generating continuously changing test inputs. Press the
Select Stimulators button on the bottom row of buttons at the top. This brings up a
window showing the different stimulators built into the simulator. The row of LEDs next to the
label ‘Bc’ represents the 16 bits of the built- in 16-bit counter. You can assign these bits to the
signals you are simulating as a means of generating test inputs. Select X from the signal list and
then press on the rightmost LED of the Bc row. This assigns B0 to X. Now assign B1 to Y, and
press close. Next, go to Options:Preferences and under the simulation tab make sure
that the B0 frequency is 500 MHz and the B0 period is 2ns. Click on OK, then use the
Simulation Step button to step through the different test inputs generated by the counter.
This is a useful technique for debugging, especially when there are a lot of inputs.

Simulating with Scripts

Writing a simulation script is usually more efficient than simulating by hand. Scripts allow
you to automate repetitive testing tasks and spare you the work of adding and stimulating your
signals each time you test a circuit. You can write your script in any text editor, or use the built-
in script editor by choosing Tools->Script Editor from the Foundation Logic
Simulator and clicking Create Empty Script. For a full list of simulation commands,
choose Help->Simulation Macros Help from the Script Editor.

Here is an example script that performs the same tests we did by hand. Lines beginning with
a vertical bar “|” are comments.

Page 4 of 9 EE 121, Autumn 2002-2003

| EE121
| Script to test the XOR gate in Lab 1

| Issue some initialization commands
delete_signals
restart
greset
| Simulate in functional mode
set_mode functional
| Set the stepsize; i.e., the default simulation time interval
stepsize 1 ns
| Set the simulation precision...increasing precision time
| decreases timing accuracy but speeds up the simulation.
| Defaults to 100 ps.
sim_precision 125 ps
| Add signals to the watch window.
Watch X Y Z X_L Y_L XNY XYN

| Test the truth table
assign X 0
assign Y 0
| The sim command runs the simulation for one step size.
sim
assign X 0
assign Y 1
sim
assign X 1
assign Y 0
sim
assign X 1
assign Y 1
sim

| Test the transition from all 0's to all 1's in functional mode.
assign X 0
assign Y 0
sim
assign X 1
assign Y 1
sim

| Test the transition from all 0's to all 1's in functional mode.
set_mode unit
assign X 0
assign Y 0
sim
assign X 1
assign Y 1
sim

| Use counters
| At 8 ns, assign 0 to X, then increment X (modulo 2) every 2ns 8 times
wfm X @8ns = 0 (2ns = inc by 1) * 8

Laboratory Assignment #1 Page 5 of 9

| At 8 ns, assign 0 to Y, then increment Y (modulo 2) every 4ns 4 times
wfm Y @8ns = 0 (4ns = inc by 1) * 4
sim 16ns

The script might not seem useful with such a small design, but as your designs become larger

you will find them essential.

3.3. Creating a XOR gate macro

In order to use a schematic easily within another schematic, it is best to create a symbol
macro. To create a macro out of the XOR gate schematic, select ‘Hierarchy->Create
Macro Symbol from Current Sheet from the schematic editor. The symbol name
should be XORgate, the inputs should be X and Y, and the output should be Z. Verify this, then
click OK. You can now use the XOR gate in other schematics by selecting it from the
components list.

4. Full adder
Create a new schematic called FullAdder using Figure 2 as a guide. The input signals are A,

B, and CIN (carry in) and the outputs are S and COUT (carry out). This schematic uses the
XORgate macro that you created earlier. Make sure you label the internal nodes AXORB, AB,
ACIN, and BCIN. After you have created the schematic, create a macro from the schematic and
name it FullAdder.

Figure 2. Full adder schematic.

Simulate the schematic and verify the truth table below (functional-mode simulation) with a

script. Make sure you always include internal nodes in your simulation. Also, make sure that
FullAdder.sch is the only schematic listed in the main Project Manger window, that is, the
only schematic in your project). Including more than one schematic in a project can confuse the

Page 6 of 9 EE 121, Autumn 2002-2003

simulator and cause errors; thus it is a good idea to always include only one schematic (the main
top-level schematic) in your projects. All other (lower- level) schematics should be converted to
and included as macros. To remove a schematic, right click on it in the list of project files and
select Remove. To add a schematic, right click on the project name in the list of project files
and select Add.

Alternatively, you can simulate a macro by choosing File->Simulate Single Component from
the Simulator.

A B CIN S COUT
1 1 1 1 1
1 1 0 0 1
1 0 1 0 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0
0 0 1 1 0
0 0 0 0 0

After verifying the truth table above, print the simulation results.

5. 4-bit adder
Create a new schematic called Adder4 using Figure 3 as a guide. You will use buses in

this schematic. A bus is an array of signals, and is displayed as a thicker line than a regular
wire. When using a bus, the naming convention is to give the bus a name in the form of
bus_name[X:Y], where bus_name is the variable name and X is the most significant bit and
Y is the least significant bit. Individual signals in the bus are named bus_nameN where N is
between X and Y. Individual signals can be accessed by wiring a regular wire from a bus to
a terminal and giving the internal node the name corresponding to the desired signal, or by
using the Draw Bus Taps’ tool.

After creating the Adder4 schematic, simulate the 4-bit adder with a script for additions
using both hexadecimal and decimal notation (functional-mode simulation). Again, only one
schematic should be listed in the main project window. At this point, Adder4.sch is the
top-level schematic and thus should be the only schematic file listed.

You might find the following simulation commands useful:

| Add the busses A[3:0] and B[3:0] to the watch window
vector A A3 A2 A1 A0
vector B B3 B2 B1 B0
watch A B

| Change A and B to decimal
radix dec A B
| Change A and B to hexadecimal
radix hex A B

Laboratory Assignment #1 Page 7 of 9

| Assign hexadecimal values to A and B
assign A 2\h
assign B C\h

| Stimulate A, B and CIN with a pattern
pattern A 0\h D\h 7\h 5\h F\h
pattern B 6\h F\h 8\h 3\h 0\h
pattern CIN 0 0 1 1 1
(sim) * 5

Print the simulation results. Make a macro out of Adder4.

Figure 3. Adder4 schematic.

6. 16-bit adder
Create a new schematic called Adder16 using Figure 4 as a guide. In this schematic you

will learn how to pull a piece of a bus out of a bus (e.g., A[7:4] out of A[15:0]). Write a script to

Page 8 of 9 EE 121, Autumn 2002-2003

simulate the 16-bit adder using decimal numbers and check the results for correctness (functional
mode). Print the simulation results. Next, simulate the 16-bit adder in unit-delay mode. In
particular, simulate the case where all inputs are 0 transitioning to all 1s. Print and explain the
results.

Figure 4. Adder16 schematic.

7. What to turn in
1. XOR gate schematic
2. XOR gate simulation results

a. truth table verification
b. inputs transitioned from 0s to 1s (both functional and unit-mode simulations)
c. explanation of glitch in unit-mode simulation.

3. 1-bit adder simulation results (verification of truth table) and script
4. 4-bit adder simulation results (using both decimal and hexadecimal numbers) and script
5. 16-bit adder simulation results and script

a. addition using decimal numbers in functional-mode

Laboratory Assignment #1 Page 9 of 9

b. addition resulting when inputs are transitioned from 0s to 1s in unit-mode
c. explanation of the simulation results in unit-mode

