EE 121 Digital Design Laboratory $\begin{array}{l} {\rm March}\ 6,\ 2001\\ {\rm Handout}\ \#33 \end{array}$

Midterm Examination #2

Open book, open notes. Time limit: 2 hours

Honor Code Acceptance: This examination has been written according to the spirit and principles of the Stanford Honor Code.

	Problem	Score
Signature	 #1	/ 12
	#2	/ 13
	 #3	/ 20
Print Name	#4	/ 20
	#5	/ 10
	#6	/ 25

Total

/ 100

EE 121 Digital Design Laboratory $\begin{array}{l} \text{March 6, 2001} \\ \text{Handout } \#33 \end{array}$

Midterm Examination #2

Open book, open notes. Time limit: 2 hours

1. (12 points) *Multiplication*. The unsigned product of 2-bit numbers A_1A_0 and B_1B_0 is a 4-bit result $Y_3Y_2Y_1Y_0$. For example,

 $11_2 \cdot 11_2 = 3_{10} \cdot 3_{10} = 9_{10} = 1001_2$.

Find efficient Boolean formulas for the product bits $Y_3Y_2Y_1Y_0$ as functions of the bits of the multiplier A_1A_0 and the multiplicand B_1B_0 .

Hint: the formulas for Y_0 and Y_3 are *very* simple. Remark: the best equations are *not* the minimal sums of products.

2. (13 points) Sideways adder. The sideways sum of a signal vector $(X_1, X_2, ..., X_n)$ is the number of input signals that are true; that is,

$$\mathsf{S} = \sum_{k=1}^{n} \mathsf{X}_{k}$$

Since S has n+1 possible values, the sum requires a vector of $m = \lceil \log_2(n+1) \rceil$ bits. For n = 7, the sum is represented by $\lceil \log_2(7+1) \rceil = \lceil \log_2 8 \rceil = 3$ bits; that is, $S = (S_2, S_1, S_0)$.

Using only full adders, design a circuit that calculates the sideways sum (S_2, S_1, S_0) of (X_1, X_2, \ldots, X_7) . You may use either of the two alternative logic symbol for the full adder. (Do not try to wire the full adders inside the box above.) Hint: six full adders are more than enough. Bonus points for minimum number of gates and smallest propagation delay.

- 3. (20 points) Latches?
 - a. A committee of logic designers could not agree on whether to use NAND gates or NOR gates to build a set-reset latch. The compromise design is shown below.

Fill in the function table for this sequential circuit.

Х	Υ	Q	/Q
0	0		
0	1		
1	0		
1	1		

Explain what is wrong with this "latch"?

b. The feedback sequential circuit shown below is intended to change state with each clock pulse; in other words, it is supposed to be a "toggle latch."

Explain why this sequential circuit does not work as intended. What actually happens?

4. (20 points) State machine analysis. Analyze the clocked synchronous state machine below.

a. Draw a state diagram for this state machine.

b. Is this machine a Mealy machine or a Moore machine?

Answer (circle one): Mealy Moore

c. Fill in the transition/output table for the above state machine.

	/RE		
Q1 Q2	0	1	OUT
0 0			
0 1			
10			
11			
	Q1*	Q2*	

5. (10 points) A negative edge-triggered D flip-flop can be built from a positive edge-triggered D flip-flop and an inverter, as shown below.

The propagation delays and timing parameters for the inverter and the D flip-flop are given in the following tables.

Inverter			
	min max		
$t_{\rm pLH}$	5	7	
$t_{\rm pHL}$	3	5	

Flip-Flop		
$t_{\rm s}$	6	
$t_{\rm h}$	2	

Find the setup time t_s and the hold time t_h for this negative edge-triggered flip-flop.

Setup time $t_s =$ _____

Hold time $t_{\rm h}$ =

6. (25 points) *Variable-speed counter*. The 24-bit binary counter shown below counts either at full speed or at half speed as determined by the speed-control state machine SPEED.

In half-speed mode, SPEED enables counting on every other clock, whereas in full-speed mode, the counter enable CE is always true. The speed is changed by the pushbutton input BIN; each positive pulse of BIN toggles the speed mode, from half to full or from full to half. This input is debounced, and its pulse width is a large number of clock cycles.

a. Draw the state diagram for the SPEED state machine.

b. For a state assignment of your choice, write the transition/output table.

c. For the state assignment of part b, write the transition and output equations.