EE 121 June 4, 2002
Digital Design Laboratory Handout #34

Midterm Examination #2 Solutions
Open book, open notes. Time limit: 75 minutes

1. (20 points) Setup and hold times. The D flip-flops below have setup time ¢; = 18 ns and
hold time ¢, = 4ns.

D D Q Q b——{ms =D Q Q
CLK —— 10ns —> CLK >

a. Suppose the clock is delayed by exactly 10ns. (See the left device in the figure above.)
What are the setup and hold times for this modified flip-flop?

When the clock is delayed, the data may be delayed by the same amount without violating
the setup time. But the hold time is increased because the clock does not arrive until later.

Setup time: t, = 18 — 10 = 8ns Hold time: t, =4 + 10 = 14ns

b. Suppose the data input is delayed by exactly 10ns. (See the right device in the figure
above.) What are the setup and hold times for this modified flip-flop?

Setup time: t, = 18 + 10 = 28 ns Hold time: ¢, =4 — 10 = —6ns

4{>®7D QO*—‘**Q
CLK ——Ol>> CLK ——Ol>> Q

c. A negative-edge-triggered flip-flop can be built from a positive-edge-triggered flip-flop
by inverting the clock input. (See the left device in the figure above.)

Propagation delays in nanoseconds for the inverter are given in the following table.

‘ min max
tLa 12 22
taL 8 16

Find the setup and hold times for the modified flip-flop.
We must use minimum rising clock delay for setup time, maximum delay for hold time.
Setup time: t, = 18 — 12 = 6ns Hold time: ¢, =4 + 22 = 26 ns

d. As you have discovered in parts (a) and (c), delaying the clock increases the hold time.
To reduce the hold time, we might add delay to the data input, as shown in the right

2 EE 121, Spring 2001-2002

device in the figure above. (Note that the output of the modified flip-flop must now
be taken from the internal flip-flop’s complemented output.) Find the setup and hold
times for this negative-edge-triggered flip-flop.

The data window has increased from 22 ns to 46 ns—not a good way to build a flip-flop!
Setup time: ¢, = 18 — 12 + max(22, 16) = 28 ns
Hold time: ¢, = 4 + 22 — min(12,8) = 18ns

2. (20 points) Fun with counters.

a. A superstitious counter is a free-running 4-bit counter that skips the value 13. Build
a superstitious counter using one 74x163 4-bit counter and two 2-input gates.

74x163

CLK > CLK
1—9CLR

———q LD
1 ENP
1 ENT
0 A QA ——
1 B QB 4
1 c QC))@—
1 D QD
RCO ——

The combinational logic, which is equivalent to NAND3A, a 3-input NAND gate with one
active low input, detects when the count is 12 (or 13). When the count reaches 12, the
value 14 is loaded on the next clock, skipping 13. Otherwise, the counter runs freely.

b. The output of a chirp counter is the following waveform.
| O e I
LU
16 15 14 13 4 321 16

The chirp output is high for 16 clocks, low for 15, high for 14, and so on until it is high
of one clock duration. Then the cycle repeats. The overall period of this counter is

16+15+---+2+1=(17-16)/2 = 136.

Use two 4-bit counters and assorted gate(s) to build a chirp counter.

Midterm Examination #2 Solutions

vce
74x163 74x163
CLK > CLK > CLK
——d CLR —— CLR
-——q b —— LD
ENP ENP
\— ENT ENT
—A QA A QA
—B QB B QB
—C QcC c QcC
—D QD D QD
RCO RCO

The left counter loads the right counter with a new start value each time the right counter
reaches the maximum value of 15 and RCO goes high. At the same time, the left counter
is incremented. Suppose that the value to be loaded into the right counter is 0. When
the right counter reaches 15, RCO goes high, and at the next rising clock edge, the left
counter value increments to 1, so the output WAV is high. The right counter increments
at the next clock. After 16 clock cycles, RCO causes 1 to be loaded into the right counter
and the output WAV toggles low. After 15 clocks, 2 is loaded into the right counter, the

left counter increments so WAV toggles high, and so on.

3. (30 points) FIFO. A 3-deep FIFO stores up to three words of data that are retrieved
(“read”) in a first-in first-out manner. The state of the FIFO control unit is the two-bit
binary number in the range {0, ..., 3} that tells how many words are stored in the FIFO.

The FIFO state machine has two control inputs, RD (“read”) and WR (“write”), and two
outputs, FULL and EMPTY. The FIFO controller also has internal signals, SELO and SEL1,

that select which stored data value to supply to the output.

DIN D Q D
WR E
CLK > >
WR SEL[1:0]
FIFOCTL
RD RD EMPTY

>

FULL

m O

WAV

=

N

EMPTY

FULL

DOUT

EE 121, Spring 2001-2002

The control inputs are examined at each rising edge of the system clock. When WR alone
is asserted, the FIFO state is incremented by 1, whereas when RD alone is asserted, the
FIFO state is decremented by 1. If both RD and WR are asserted when the FIFO is
nonempty, the FIFO state remains unchanged, since a new word is written into the FIFO
while the oldest word is read and removed. Finally, when neither RD nor WR is active,
the FIFO remains unchanged.

The FIFO silently ignores attempts to write when it is full or to read when it is empty.
The Moore outputs FULL and EMPTY report when the FIFO is full or empty, respectively.

a. Fill in the following transition/output table for the FIFO state machine.

RD, WR
Q1QO FULL EMPTY
00 01 10 11
00 00 01 00 00 0 1
01 01 10 00 01 0 0
10 10 11 01 10 0 0
11 11 11 10 11 1 0
Q1*,Q0*

b. Find simplified transition/output equations for the FIFO state machine.

The canonical sums for Q0 and Q1 each have 8 minterms. Using Karnaugh maps, we
obtain simpler sum-of-products representations. Other simplified equations might make
use of intermediate expressions such as RD & WR.

Ql* = Q1-Q0 + Q1-RD" + Q1-WR + QO0-RD’-WR

Q0* = QO'-RD'-WR + Q1'-Q0-WR +
Ql-Q0-RD’ + Q1-Q0-WR + Q1-Q0"-RD-WR

FULL = Q1-QO0

EMPTY = Q1’- Q0

Midterm Examination #2 Solutions)

4. (30 points) Mouse encoder. The optical encoder wheel in a mechanical ball mouse pro-
duces detector pulses that indicate the speed and direction of motion.

DET1 }
+1 +1 -1 -1
DET2 | \ | L { | {
counterclockwise stopped clockwise stopped
cow [] []
cw [] []

Draw the state diagram of a clocked synchronous state machine whose inputs are the
detector pulses and whose outputs are signals that can be used by an up/down counter.

MOUSE
— DET1 CW —
— DET2 CCW [—

This state machine has two Moore outputs, CW and CCW. CW should be active for one
clock period when the encoder wheel has completed a clockwise step (indicated by the
down arrows in the timing diagram), and CCW should be active for one clock period when
the disk has completed a counterclockwise step.

Your state machine must accommodate input signals that are not debounced; you may
assume that the output of each detector is stable before the other detector output changes.

This problem is open ended; there are quite a few situations to consider. More credit will
be given for more complete solutions.

A single state diagram is not the proper way to represent the optical encoder processing
machine, for two reasons:

e The state machine can be more simply realized by breaking it into two or more smaller
machines.

e Much of the state consists of past values of the inputs and outputs, which can be stored
in external flip-flops. In fact, the Moore outputs are really pipelined Mealy outputs, which
store the values of Mealy outputs for a complete clock period.

First we design a state machine assuming that the inputs are debounced. The software for
version of this state machine uses four variables: PREV1 and PREV2 are the values of the
detector outputs during the previous clock cycle, and CW and CCW are the outputs that are
pulsed for one clock period when a falling edge is detected on one detector output while the
other detector output is high. The debounced inputs are DEB1 and DEB?2.

EE 121, Spring 2001-2002

for ;) {
if (DEB2 == 1 && DEB1 == 0 && PREV1 == 1)
CCw = 1;
if (DEB1 == 1 && DEB2 == 0 && PREV2 == 1)
Cw = 1;
PREV1 = DEB1; PREV2 = DEB2;
}
The hardware realization uses four D flip-flops for state variables and Moore outputs.
PREV1
DEB1 D Q —D Q ccw
—> F —>
F’REV\Z—C \
DEB2 D Q D Q cw
—> L —>

CLK

The detector signals can be used to debounce each other. When one signal changes, further
changes of that signal can be ignored until the other signal changes. In order to detect changes,
the previous value of the detector signals are remembered. We need one more variable: the
value of the signal that changed most recently; call this variable CHANGED.

for (;;) {

if (DET1 != PREV1 == 1 && CHANGED
DEB1 = DET1; CHANGED = 1;

}

if (DET2 != PREV1 == 2 && CHANGED == 1) {
DEB2 = DET2; CHANGED = 2;

}

PREV1 = DET1; PREV2 = DET2;

=2) {

}

In the hardware realization shown below, the flip-flop that stores CHANGED represents detec-
tor 1 by value 0. Clock connections are omitted to simplify the diagram.

CHANGE_CHANGED

CHANGED
D Q

S —> QP
0 D Q DEB1
DET1 D Q PRE&I‘>§;\\\\ ; — >
—>
0 D Q DEB2
DET2 D Q PRE&E‘>§;\\\\ ; —>
7> -

