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1 Vectors

1.1 Julia timing test. Determine how much time it takes for your computer to compute the inner
product of two vectors of length 108 (100 million), and use this to estimate (very crudely) how
many Gflops/sec your computer can carry out. The following code generates two (random) vectors
of length 108, and times the evaluation of the inner product. (You might run it a few times; the
first time might be a bit slower.)

a = randn(10^8);

b = randn(10^8);

@time s=a’*b

How long would it take a person to carry this out, assuming the person can carry out a floating
point operation every 10 seconds for 8 hours each day?

1.2 Creating vectors in Julia. In each of the parts below, use Julia to create the described vector a. In
each case, check that aTx gives the correct result, for a random vector x.

(a) aTx extracts (is equal to) the 5th entry of the 10-vector x.

(b) aTx is the weighted average of a 3-vector x, assigning weights 0.3 to the first component, 0.4
to the second, and 0.3 to the third.

(c) aTx (with x a 22-vector) is the sum of xi for i a multiple of a 4, minus the sum of xi for i a
multiple of 7.

(d) aTx (with x an 11-vector) is the average of the middle five entries of x, i.e., entries 4 to 8.

1.3 Vector expressions. Suppose a = (4,−2, 1). Determine whether each expression below is valid
notation. If it is, give its value.

(a) (a, a)

(b) a− [4,−2, 0]

(c) a−

 4
−2
3


(d) a+ (2, 6)

1.4 The 7-vector c represents the daily earnings of a company over one week, with c1 the earnings on
Sunday, c2 the earnings on Monday, and so on, with c7 the earnings on Saturday. (Negative entries
in the earnings vector mean a loss on that day.)

Express the following quantities in the form aT c. In each case, give a (which can be different for
the different quantities, of course).

(a) Wednesday’s earnings.

(b) The total earnings over the week.

(c) The average weekend earnings.

(d) The average weekday earnings.
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(e) The difference between the average weekend earnings and the average weekday earnings.

1.5 When an inner product or scalar-vector product is zero. Given n-vectors a, b, x, and scalar α.
Select one choice in each subproblem below.

(a) If aT b = 0, then

(i) at least one of a or b must be 0

(ii) both a and b must be 0

(iii) both a and b can be nonzero

(b) If αx = 0, then

(i) one of α or x must be 0

(ii) both α and x must be 0

(iii) both α and x can be nonzero

1.6 A particular computer can compute the inner product of two 106-vectors in around 0.001 second.
The same computer can compute the inner product of two 107-vectors in (approximately) how
long?

1.7 The regression model ŷ = xTβ + v predicts the life span (age at death) of a person in some
population, where the feature vector x encodes various attributes of the person. Assuming the
model fits actual life span data reasonably well (although of course not very accurately for any
particular individual) what would you guess about β3, if x3 = 1 means the person is a smoker, and
x3 = 0 means the person is not a smoker? For example, do you think that β3 is positive? Negative?
Feel free to guess a plausible value for β3.

1.8 Some basic vector operations. Suppose w = (0, 2,−1) and z = (−3, 2). Determine whether each
expression below uses valid (mathematical) notation, and if it is valid, give its value.

(a) w2:3 + z.

(b) w − 2z.

(c) [w;−z].

(d)

 z
w
2z

+ 1.

(e) wT (z, 3).

1.9 Prices, bill of materials, and a budget. To produce one unit of some product requires specific
quantities of n different resources, denoted q1, . . . , qn, each with its own units. (The vector q is
called the bill of materials for the product.) To produce Q units of the product, the resource
requirements are Qq1, . . . , Qqn. The prices per unit of the resources are given by p1, . . . , pn. (The
quantities and prices are positive.) The total cost is the sum of the resource prices times the
resource requirements. What is the maximum number of units of the product you can produce,
given a (positive) total budget B?

Express your answer using vector notation, in terms of the quantity and price n-vectors q and p,
the budget B, and any basic arithmetic operations you might need. If you introduce additional
vectors, be sure to say what they are, i.e., what their entries are.
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1.10 Exponentially weighted average. Suppose w is an n-vector with positive entries that sum to one,
i.e., 1Tw = 1. For any n-vector x, wTx can be interpreted as a weighted average of the entries of
x. In this context the entries of w are called the weights. The weighted average with w = (1/n)1
is the ordinary (or unweighted) average.

One common choice of weights, typically used when the vector x represents a time series, are
exponential weights, defined by wi = (1/α)γi, where γ > 0 is a parameter and

α = γ1 + · · ·+ γn

is the so-called normalizing constant, which ensures that 1Tw = 1. Using a well-known formula for
the sum of powers, we have

α =

{
γ 1−γn

1−γ γ ̸= 1,

n γ = 1.

With this choice of w, the weighted average wTx is called the exponentially weighted average of x,
with parameter γ.

Here is an interpretation of the exponentially weighted average. For γ < 1, the associated weighted
average emphasizes the entries of x with small indexes, and de-emphasized the entries of x with
large indexes, when finding the average; for γ > 1 the opposite is true.

Here is a typical use of an exponentially weighted average. The registrar of a university needs to
estimate the enrollment in the next offering of a certain class, using previous enrollment numbers.
The vector x gives the previous enrollments in the class, with x1 the most recent offering, x2 the
one before that, and so on. The estimate of the next offering enrollment is the weighted average
of x with γ < 1, say, γ = 0.8. This means that the enrollment in the more recent offerings of the
class have more weight in forming the average.

Finally, we get to the problem. Plot the exponential weights for n = 50 and the three parameter
values γ = 1, γ = 0.95, γ = 1.05. Also plot the 50-vector x with xi = sin(2πi/50).

Find the weighted average of the n-vector x for the three values of γ. Are the results consistent
with the interpretation given above?
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2 Linear functions

2.1 Deviation of middle element value from average. Suppose x is a n-vector, with n = 2m − 1 and
m ≥ 1. We define the middle element value of x as xm. Define

f(x) = xm − 1

n

n∑
i=1

xi,

which is the difference between the middle element value and the average of the coefficients in x.
Express f in the form f(x) = aTx, where a is an n-vector.

2.2 Nonlinear functions. Show that the following two functions f : R3 → R are not linear.

(a) f(x) = (x1 − x2 + x3)
2.

(b) f(x) = (x1 + 2x2 − x3)+, where for any real number a, (a)+ is the positive part of a, defined
as (a)+ = max{a, 0}. Remark. This function is widely used in neural networks, where is it
called the relu function, a shortening of rectified linear unit.

Hint. To show a function f is not linear, it is enough to find specific vectors x, y, and scalars α, β,
for which superposition does not hold, i.e.,

f(αx+ βy) ̸= αf(x) + βf(y).

It’s polite to the reader, but not formally required, to find simple values x, y, α, β for your coun-
terexample.

2.3 Net present value. Suppose that the n-vector c represents a cash flow over n periods. The NPV (net
present value) of the cash flow, with (positive) per-period interest rate r, is defined as NPV(c, r) =
c1 + (1 + r)−1c2 + · · ·+ (1 + r)−n+1cn.

(a) How are NPV(c, 0.05) and NPV(2c, 0.05) related? (The second case is twice the cash flow,
with the same 5% per-period interest rate.)

(b) How are NPV(c, 0.05) and NPV(c, 0.10) related? (The second case is the same cash flow, with
twice the per-period interest rate.)

In both cases, your response can either be a specific and simple formula relating the two quantities,
or the response ‘It’s complicated’, which means that you cannot say what the relationship is,
without knowing more about the entries of c.

2.4 Suppose we have a linear function f : R3 → R, and

a = (4,−2, 0), b = (8,−4, 0), c = (5,−1, 1).

You are told that f(a) = 5. What can you say about f(b)? If it cannot be determined, say so. If
it can be determined from the information given above, give its value. Repeat for f(c).

2.5 Let the T -vector x be a time series, with xt its value in period t, for t = 1, . . . , T . (This could
be hourly rainfall, a daily stock price, or course enrollment each term, for example.) Consider
the function f(x) = xT − avg(x), the difference of the last value and the average. Is f linear?
If f is not linear, give a specific example of T -vectors x, y, and constants α and β, for which
f(αx+ βy) ̸= αf(x) + βf(y). If f is linear, give a specific T -vector a for which f(x) = aTx holds
for any T -vector x.
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2.6 Combining two regression models. Two interns, Ann and Bob, construct regression models to
predict the same quantity y, using different sets of features. Ann’s model is

ŷann = (xann)Tβann + vann,

where xann is an nann-vector of features, and Bob’s model is

ŷbob = (xbob)Tβbob + vbob,

where xbob is an nbob-vector of features. (The superscripts here are labels that allow us to dis-
tinguish the two different regression model coefficients and feature dimensions.) Their manager
decides to combine their two estimates, weighting Ann’s estimate 70% and Bob’s estimate 30%, to
get the combined prediction ŷ = 0.7ŷann + 0.3ŷbob. (Presumably this means the manager trusts
Ann’s model more than Bob’s.) Express this as a single regression model ŷ = xTβ + v, where
x = (xann, xbob). Give β and v in terms of βann, βbob, vann, and vbob, using standard vector
notation.

7



3 Norm and distance

3.1 Correlation coefficient. Each of the following plots shows the points corresponding to two vectors x
and y of the same size, i.e., we plot points at the locations (xi, yi). In each case, determine whether
the correlation coefficient ρ of the two vectors is positive (and, say, ≥ 0.5), negative (say, ≤ −0.5),
or near zero (say, less than 0.3 in absolute value). (You must choose one of these options.)

(a) (b)
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3.2 Nearest neighbor and smallest angle. Using Julia, find the nearest neighbor of a = (1, 3, 4) among
the vectors

x1 = (4, 3, 5), x2 = (0.4, 10, 50), x3 = (1, 4, 10), x4 = (30, 40, 50).

Report the minimum distance of a to x1, . . . , x4. Also, find which of x1, . . . , x4 makes the smallest
angle with a and report that angle.

3.3 Orthogonality. Suppose the n-vectors a, b, and c satisfy a ⊥ c and b ⊥ c. Which of the following
statements must hold? (That is, are true for any a, b, and c that satisfy a ⊥ c, b ⊥ c.)
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(a) a ⊥ b.

(b) (a+ b) ⊥ c.

(c) (a+ c) ⊥ (b+ c).

3.4 Guessing means and standard deviations. Each of the plots below shows a vector x, with xi plotted
on the vertical axis and i on the horizontal axis. For each case, estimate avg(x) and std(x). We
are looking for a crude guess, say, within a factor of two.
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3.5 Let α, β, and γ be scalars and let a, b, and c be pairwise orthogonal n-vectors. (This means that
a ⊥ b, a ⊥ c, and b ⊥ c.) Express

∥αa+ βb+ γc∥

in terms of ∥a∥, ∥b∥, ∥c∥, α, β, and γ.
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3.6 True or false. Determine whether each of the following statements is true or false.

(a) If n-vectors x and y make an acute angle, then ∥x+ y∥ ≥ max{∥x∥, ∥y∥}.
(b) For any vector a, avg(a) ≤ rms(a).

3.7 Let x = (1, 2, 3) and y = (3, 2, 1). Find the quantities below. Your solutions can involve standard
mathematical functions like squareroot, arc-cosine, and so on. You do not need to show any
computations or give any justification.

(a) rms(x).

(b) avg(y).

(c) std(x).

(d) The correlation coefficient of x and y.

(e) The distance between x and y.

3.8 Time to find the nearest neighbor. We have a collection of 10000 different feature vectors, each
of dimension 1000. A new feature vector (of dimension 1000) is given, and we need to determine
which of the 10000 given feature vectors is its nearest neighbor. About how long would this take,
on a computer capable of 10 Gflop/s? (That is, 1010 floating point operations per second.) Choose
one of the responses below. Briefly justify your choice.

• Well under one second.

• A few seconds.

• A few minutes.

• Around an hour.

3.9 Suppose x is an n-vector, with n > 1. Then x2

(a) is the inner product of x with itself

(b) is the vector with entries x2i

(c) makes no sense

(Choose one.)

3.10 Suppose x is a vector. Choose one in each subproblem below.

(a) ∥x∥ = −∥ − x∥
(i) always

(ii) sometimes

(iii) never

(b) ∥(x, x)∥ =

(i) ∥x∥
(ii) 2∥x∥
(iii)

√
2∥x∥

(iv) 1
2∥x∥
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3.11 Can we generalize the triangle inequality to three vectors? That is, do we have

∥a+ b+ c∥ ≤ ∥a∥+ ∥b∥+ ∥c∥

for any n-vectors a, b, c? If so, justify it. If it’s not true, give a counter-example, i.e., specific vectors
a, b, and c for which the inequality is false.

3.12 RMS value of difference of orthogonal vectors. Suppose the n-vectors a and b are orthogonal. What
is rms(a − b)? If it cannot be determined without more information, say so. Otherwise give its
value.

3.13 Suppose x is a 20-vector with ∥x∥ = 10. Which of the statements below follow from the Chebyshev
inequality? (We do not count statements that are true, but don’t follow from the Chebyshev
inequality.)

(a) no xi can satisfy |xi| ≥ 10.5

(b) at least one xi must have magnitude at least 2

(c) no more than 3 entries of x can exceed 6 in magnitude

(d) no more than half the entries of x are positive

3.14 Which of the following are true? (True means it holds for any vector x.)

(a) std(x) ≤ rms(x)

(b) rms(x) ≤ |avg(x)|
(c) std(x)2 = rms(x)2 − avg(x)2

(d) std(x) = 0 only when all entries of x are equal

3.15 Suppose x gives the daily temperature in Palo Alto and y gives the daily temperature in the
neighboring city Menlo Park, over the same 5 year period. What would you expect the correlation
coefficient between x and y to be? For example, would you expect it to be positive, negative, near
1, near −1, or near 0?

3.16 Suppose that ∥a+ b∥ < ∥a∥. What can you say about θ = ∠(a, b)?

(a) θ = 0 (orthogonal)

(b) θ > 0 (obtuse angle)

(c) θ < 0 (acute angle)

Choose one and justify your choice. (The assumption implies that both a and b are nonzero. You
can use this fact without justification.)

3.17 Suppose x and y are Boolean feature vectors, i.e., each entry is either 0 or 1, that encode the
presence of symptoms in patients Alice and Bob. Which of the following are true statements?

(a) xT y is number of symptoms Alice and Bob have in common

(b) ∥x∥2 is number of symptoms Alice has

(c) 1T y is number of symptoms Bob has
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(d) ∥x− y∥2 is number of symptoms Alice has but Bob does not

(e) 1T (x− y) is number of symptoms Alice has but Bob does not

(f) x ⊥ y means that Alice and Bob do not share any symptoms

3.18 Stocks with ticker symbols AAA and BBB have daily returns over three days given by a =
(+0.01,−0.01,+0.03) and b = (−0.01, 0.00,+0.02). Which of the following must be true?

(a) AAA has higher (mean) return than BBB (over these three days)

(b) BBB has rower risk (standard deviation of return) than AAA (over these three days)

(c) AAA is a better investment than BBB

(d) AAA and BBB are likely in the same industry sector

3.19 Let x and y be (nonzero) word count vectors for two documents, associated with a given dictionary.
Choose one in each of the subproblems below, and briefly justify your answer.

(a) If ∠(x, y) = 0, we can conclude

(i) the documents are identical

(ii) the documents share no dictionary words

(iii) the word count histogram vectors of the two documents are the same

(iv) the documents have the same author

(v) the documents have different authors

(b) If ∠(x, y) = 90◦, we can conclude

(i) the documents are identical

(ii) the documents share no dictionary words

(iii) the word count histogram vectors of the two documents are the same

(iv) the documents have the same author

(v) the documents have different authors

3.20 Nearest neighbors of Wikipedia word count histograms. In this problem you will explore the nearest
neighbors of the word count histograms of a collection of 500 Wikipedia articles. To get the data,
run the Julia commands

using VMLS

articles, dictionary, titles = wikipedia_data();

• articles contains the word histogram vectors of 500 articles; each word histogram vector has
4423 elements.

• dictionary is an array of 4423 words.

• titles is an array of the 500 article titles.

To access entries of these vectors, use [i]. For example, articles[3] is the word histogram vector
for the 3rd article, dictionary[15] is the 15th word in the dictionary, and titles[6] is the title
of the 6th article. (We encourage you to try these.)
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To find the k nearest neighbors among a give list of vectors X of the vector u, you can use the
function k_nearest_neighbors(X,u,k) (included in the VMLS package). You are encouraged to
look at the code for this function, which is very short and straightforward.

Here are some useful Julia tips.

• The function sortperm gives the indices when you sort a vector. sortperm(articles[i],rev=true)
gives the indices of words when they are sorted from largest to smallest histogram value in
article i. sortperm(articles[i],rev=true)[1:10] gives the indices of the 10 most common
words in article i.

• dictionary[sortperm(articles[i],rev=true)[1:10]] gives the words in the dictionary,
sorted from largest to smallest histogram value, in article i.

• The function k_nearest_neighbors (in the VMLS package) can be used to find the k nearest
neighbors of a vector from among a list of vectors:

indices, distances = k_nearest_neighbors(X, u, k)

Here X is a list of vectors, u is a vector, and k is the number of nearest neightbors. indices

gives the indices of the k nearest neightbors, sorted from closest to farthest; distances gives
the corresponding distances.

(a) Choose an article. Let i be your favorite integer between 1 and 500. Find the title of the
article, and the 10 most common words in it.

(b) Find its 10 nearest neighbors. Find the titles of the 10 nearest neighbors of your article. (More
precisely: find the titles of the 10 articles whose word count histogram vectors are closest to
the word count histogram of your chosen article.) Do the results makes sense?

Hint. If the results don’t make sense, then choose another favorite integer, and never speak
of this incident again.

3.21 Checking some VMLS functions. The VMLS package contains the functions rms, avg, std. Check
these by evaluating them on x = (1, 0,−2, 3), and comparing the result to a direct calculation that
does not use the VMLS functions. For example, you might compare rms(x) to sqrt(sum(x.^2)/4),
or norm(x)/sqrt(4). Your direct calculations can involve a few lines of code.

3.22 Checking some inequalities. Generate two random 10-vectors a and b (using randn(10)). Check
the following inequalities by evaluating the lefthand and righthand sides and verifying that the
inequality holds for your a and b.

(a) The triangle inequality, ∥a+ b∥ ≤ ∥a∥+ ∥b∥.
(b) The Cauchy-Schwarz inequality, |aT b| ≤ ∥a∥∥b∥.

3.23 Checking the Chebyshev inequality. Generate a random 200-vector x using x=randn(200). Verify
that no more than 8 of the entries of x satisfy |xi| ≥ 5 rms(x).

3.24 Triangle equality. Suppose the two nonzero n-vectors a and b satisfy ∥a+ b∥ = ∥a∥+ ∥b∥, i.e., the
triangle inequality holds with equality. Geometric intuition suggest that this only happens when
the vectors are aligned, i.e., satisfy ∠(a, b) = 0 (which means each is a positive multiple of the
other). Show that this is the case. Hint. Square both sides of the equality.
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3.25 Stock return time series. The 250-vector r is the return times series of a stock, denoted in percent,
i.e., r37 = −0.8 means that the stock price went down 0.8% on day 37, and r230 = 1.2 means that
the stock price went up 1.2% on day 230. (There are around 250 trading days in one year, so r
gives the daily returns over one year.) The standard deviation of r (i.e., its risk) is σ, and its mean
(i.e., return) is µ. (These are called the daily risk and return; most people work with so-called
annualized risk and return.)

(a) What is the RMS value of r?

(b) Use the Chebyshev inequality to give a maximum number of days for which we can have
|ri| ≥ 3, i.e., a gain or loss of 3% or more.

(c) Find the two quantities in parts (a) and (b) for µ = 0.08 and σ = 1.2. (These are realistic
values.) Please give your answers to four decimal places.

3.26 Finding a similar bond to buy. A bond (which is an asset that you can buy or sell) is associated
with an n-vector b, whose entries give important features of the bond related to its coupon payment
schedule, its sector and region, whether its payments are tax exempt, and its ratings by various
agencies. (You do not need to know what any of these things mean.) Each of these features has
been shifted and scaled so their typical values are all in the same range, roughly between −1 and
1.

A bond trader wishes to buy a bond with associated feature vector bdes, but the particular bond
she wants is not available. She has a list of N bonds that are available to purchase, with feature
vectors b1, . . . , bN . (This is a list of N n-vectors.)

From among these bonds that are available, which might you suggest that she buy? Your suggestion
should be in the language of VMLS, and can use words like inner product, norm, linear combination,
angle, distance, correlation, nearest neighbor, k-means, and so on.

3.27 A pth moment deviation bound. The Chebyshev inequality states that the number k of elements of

an n-vector x satisfying |xi| ≥ a must satisfy k
n ≤ ∥x∥2

a2n
. We can define p-norms, which are distinct

from Euclidean norms, for 1 ≤ p < ∞ by

∥x∥p =
p
√

|x1|p + |x2|p + · · ·+ |xn|p,

so ∥x∥pp = |x1|p + · · · + |xn|p. In analogy with rms, let xn = 1
n(x1 + · · · + xn) =

1
n1

Tx denote the
mean of x, and define the “root-mean-pth” value

rmp(x) =
p

√
1

n
(|x1 − xn|p + · · ·+ |xn − xn|p) =

1

n1/p

∥∥x− (1Tx/n)1
∥∥
p
.

(a) Using a similar argument to that for the Chebyshev inequality, verify the following pth moment
bound: if k is the number of elements of the n-vector x satisfying |xi| ≥ a, then

k

n
≤

∥x∥pp
nap

.

(b) Verify the following mean pth moment bound : if k is the number of elements of the n-vector
x satisfying |xi − 1

n1
Tx| ≥ a, then

k

n
≤ rmp(x)p

ap
.
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(c) According to the mean pth moment bound, what is the largest percentage of entries in a vector
x that can be farther than 2rmp(x) units away from avg(x) for p = 2?

(d) According to the mean pth moment bound, what is the largest percentage of entries in a vector
x that can be farther than 2rmp(x) units away from avg(x) for p = 4?

(e) According to the mean pth moment bound, what is the largest percentage of entries in a vector
x that can be farther than 2rmp(x) units away from avg(x) for p = 8?
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4 Clustering

4.1 Building a recommendation engine using k-means. A set of N users of a music-streaming app
listens to songs from a library of n songs over some period (say, a month). We describe user i’s
listening habits by her playlist vector, which is the n-vector pi defined as

(pi)j =

{
1 user i has played song j
0 user i has not played song j,

for j = 1, . . . , n. (Note that pi is an n-vector, while (pi)j is a number.) You can assume that if a
user listens to a song, she likes it.

Your job (say, during a summer internship) is to design an algorithm that recommends to each user
10 songs that she has not listened to, but might like. (You can assume that for each user, there are
at least 10 songs that she has not listened to.)

To do this, you start by running k-means on the set of playlist vectors p1, . . . , pN . (It’s not relevant
here, but a reasonable choice of k might be 100 or so.) This gives the centroids z1, . . . , zk, which
are n-vectors.

Now what do you do? You can explain in words; you do not need to give a formula to explain how
you make the recommendations for each user.

4.2 Topic discovery via k-means. In this problem you will use k-means to cluster 500 Wikipedia articles
selected from 5 broad groups of topics. To get the data, run the Julia commands

using VMLS

articles, dictionary, titles = wikipedia_data();

• articles contains the word histogram vectors of 500 articles; each word histogram vector has
4423 elements.

• dictionary is an array of 4423 words.

• titles is an array of the 500 article titles.

To access entries of these vectors, use [i]. For example, articles[3] is the word histogram vector
for the 3rd article, dictionary[15] is the 15th word in the dictionary, and titles[6] is the title
of the 6th article. (We encourage you to try these.)

You can run the k-means algorithm on the group of vectors in articles using the kmeans()

function (from the VMLS package). For example,

assignment, reps = kmeans(articles, 3)

will run k-means on the vectors in articles with k = 3.

• The array assignment gives the cluster group assignments for the articles. For example,
assignment[32] tells us which cluster article 32 belongs to (which is an integer).

• reps gives the group representatives. For example, reps[1] is the group representative for
group 1 (which is a 4423-vector).
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(a) Run k-means on the data with k = 5.

(b) Construct a 500-vector d that contains the distance between each vector and its representative.

(c) Consider cluster number 1. Give the 5 most common words that appear in articles in this
cluster. Hints.

• The function sortperm gives the indices when you sort a vector. sortperm(reps[3],rev=true)
gives the indices of words when they are sorted from largest to smallest histogram value
in representive 3.

• dictionary[sortperm(reps[3],rev=true)] gives the words in the dictionary, sorted
from largest to smallest in representative 3.

(d) Find the 5 articles that are closest to representative 1. Feel free to look up these articles in
Wikipedia.

(e) Repeat parts (c) and (d) for the other clusters.

4.3 Centroid interpretations. The n-vectors x1, . . . , xN contain n attributes of N patients admitted
to a hospital. The first component, (xi)1, is the age of patient i. The second component, (xi)2,
is 1 if the patient is having trouble breathing, and 0 if not. (The other components give other
attributes.) An ENGR108 graduate carries out k-means on this data set, with k = 22. She finds
the 5th centroid or group representative is z5 = (41.6, 0.37, 1.55, . . . , 29.6).

Give a simple short interpretation in English of the first two components, i.e., (z5)1 = 41.6 and
(z5)2 = 0.37.

4.4 Which of the following statements are correct?

(a) The goal of clustering a set of vectors is to choose the best vectors from the set

(b) The goal of clustering a set of vectors is to divide them into groups of vectors that are near
each other

(c) The goal of clustering a set of vectors is to determine the nearest neighbors of each of the
vectors

(d) The k-means algorithm always converges to a clustering that minimizes the mean-square
vector-representative distance

(e) The k-means algorithm can converge to different final clusterings, depending on the initial
choice of representatives

(f) The k-means algorithm is widely used in practice

(g) The choice of k, the number of clusters to partition a set of vectors into, depends on why you
are clustering the vectors

(h) The choice of k, the number of clusters to partition a set of vectors into, should always be as
large as your computer system can handle

4.5 Clustering class grade data. In a class with 300 students the homework assigments, quizzes, and
exams all together include 200 different problems or questions, each graded on a scale of 0–10. The
teaching assistants (TAs) cluster this data using k-means in two different ways described below.
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(a) Clustering the problems. The TAs form 200 300-vectors q1, . . . , q200, each one associated with
one of the 200 questions, with (qi)j the grade of student j on question i. The TAs then cluster
this collection of vectors into k = 5 groups using k-means.

(b) Clustering the students. The TAs form 300 200-vectors s1, . . . , s300, each one associated with
one of the 300 students, with (si)j the grade of student i on question j. The TAs then cluster
this collection of vectors into k = 10 groups using k-means.

For each of these, give a short description in English of what the TAs might find. For example,
describe some clusters they might find. Your responses are of course pure conjecture, but they
should sound plausible.
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5 Linear independence

5.1 Linear independence under combination. Suppose S = {a, b, c} and T = {d, e, f} are two linearly
independent sets of n-vectors. For each of the sets given below, determine which statement is
correct. You may not use a computer to answer the questions. (Only one is correct in each case.)

(a) {a, b, c, d, e, f}
• is always linearly independent.

• is always linearly dependent.

• could be linearly independent or linearly dependent, depending on the values of a, . . . , f .

(b) {a+ d, b+ e, c+ f}
• is always linearly independent.

• is always linearly dependent.

• could be linearly independent or linearly dependent, depending on the values of a, . . . , f .

(c) {a, a+ b, a+ b+ c}
• is always linearly independent.

• is always linearly dependent.

• could be linearly independent or linearly dependent, depending on the values of a, . . . , f .

5.2 Order of vectors in the Gram-Schmidt algorithm. Suppose a1, a2 is a list of two linearly independent
n-vectors. When we run the Gram-Schmidt algorithm on this list, we obtain the orthonormal
vectors q1, q2.

Now suppose we run the Gram-Schmidt algorithm on the list of vectors a2, a1 (i.e., the same vectors,
in reverse order). Do we get the orthonormal vectors q2, q1 (i.e., the orthonormal vectors obtained
from the original list, in reverse order)?

If you believe this is true, give a very brief explanation why. If you believe it is not true, give a
simple counter-example.

5.3 Suppose q1, q2, and q3 are orthonormal n-vectors.

(a) What can you conclude about n?

(b) For what values of n does x = (qT1 x)q1 + (qT2 x)q2 + (qT3 x)q3 hold, for all n-vectors x?

5.4 Checking linear independence using the Gram-Schmidt algorithm. The VMLS package includes a
simple implementation of the Gram-Schmidt algorithm. (You are free and even encouraged to look
at the definition of this function.) This function accepts a list of vectors and returns a list of the
orthonormal vectors. It gives a warning if Gram-Schmidt terminates early, which means the list of
vectors in linearly dependent.

In Julia, a list of vectors can be specified using, e.g.,

list_of_vectors = ( [1,2], [3,4], [5,6] )

Are the following sets of vectors linearly dependent or linearly independent? If you can say ahead
of time that the list is linearly dependent due to the dimension-independence inequality, say so.
(But still check it using gram_schmidt.)
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(a) (1,−1.1), (−2.8,−0.3), (−0.4, 1.5).

(b) (1, 0, 1, 0, 1), (0, 1, 0, 0, 1), (0, 1, 0, 1, 0).

(c) (1, 2, 0), (−2, 0, 3), (1, 0, 2).

(d) (1, 2, 0), (−2, 0, 3), (−1, 2, 3).

5.5 Fourier basis and expansion. A very famous orthonormal basis for n-vectors is the Fourier basis,
named after the mathematician Joseph Fourier. For n even, the basis has the form

d, s1, c1, s2, c2, . . . , sn/2, cn/2, a.

Here d = 1/
√
n is the constant basis vector, a is the alternating basis vector, given by

aj =

(
1

n

)1/2

(−1)j , j = 1, . . . , n,

si is the ith sine basis vector, given by

(si)j =

(
2

n

)1/2

sin

(
2πij

n

)
, i = 1, . . . , n/2, j = 1, . . . , n,

and ci is the ith cosine basis vector, given by

(ci)j =

(
2

n

)1/2

cos

(
2πij

n

)
, i = 1, . . . , n/2, j = 1, . . . , n/2− 1.

(Note that the constant basis vector can be thought of as the cosine basis vector with i = 0, scaled
by

√
2; the alternating basis vector can be thought of as the cosine basis vector with i = n/2, scaled

by
√
2.)

When an n-vector x is expressed as a linear combination of the Fourier basis vectors, it is referred
to as the Fourier expansion or spectral expansion of x. The coefficients are called the Fourier
coefficients. This comes up in many different applications.

(a) We are not asking you to slog through the algebra to show that the Fourier basis is orthonormal.
Instead, please check it numerically, by evaluating the norm of a few of them (they should be
one, or very near one due to numerical errors), and checking the inner product of a few pairs
of different basis elements (these should be zero, or very small due to numerical errors).

(b) Take n = 50. Plot d, s1, c1, s2, c2, and a.

(c) Give the Fourier expansion of the 6-vector x, with xi = i, i = 1, . . . , 6. That is, find its Fourier
coefficients, and verify that the associated linear combination of the Fourier basis vectors is x
(within a small numerical error). (You can do this numerically.)

Hint. You might find the following code useful.

function fourier_basis_const(n)

return(ones(n)/sqrt(n))

end
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function fourier_basis_sin(i,n)

return((sqrt(2/n))*sin.((2*i*pi/n)*(1:n)))

end

function fourier_basis_cos(i,n)

return((sqrt(2/n))*cos.((2*i*pi/n)*(1:n)))

end

function fourier_basis_alt(n)

return((sqrt(1/n))*(-1).^(1:n))

end

5.6 Suppose q1, . . . , qk is an orthonormal set of n-vectors, with k < n. We wish to determine if a given
n-vector a is a linear combination of them.

An intern (an ENGR108 alumna) claims that this is easy to do. She says that we compare the
n-vector

â = (qT1 a)q1 + · · ·+ (qTk a)qk

to a. If â = a, then a is a linear combination of q1, . . . , qk. If â ̸= a, then a is a not linear
combination of q1, . . . , qk.

Is the intern right? Give your answer as yes or no, and add a very short explanation.

5.7 Projections and the Gram-Schmidt algorithm. The projection projS(y) of an n-vector y onto a set
S of n-vectors is the point s ∈ Rn in S closest to y as measured by the distance ∥y − s∥, that is,
projS(y) is the point in S minimizing ∥y − s∥2 over s ∈ S.

(a) Let q be a vector with ∥q∥ = 1. Find the t ∈ R minimizing

∥y − tq∥2 .

It may be useful to recall the value t minimizing the quadratic f(t) = at2+ bt+ c when a > 0.

(b) Let S = {tq | t ∈ R} be the linear span of q. Give projS(y).

(c) Draw a picture of your result in part (b). Your picture should include the vector projS(y), y,
and y − projS(y). What is (y − projS(y))

T q? Hint. The answer to the last part is why we
call these orthogonal projectors.

(d) Let the n-vectors {q1, . . . , qk} be orthonormal and t1, . . . , tk be scalars. Justify the equality

∥y − t1q1 − · · · − tkqk∥2 = ∥y∥2 − 2(t1q
T
1 y + · · ·+ tkq

T
k y) + t21 + · · ·+ t2k.

(e) Let S = {t1q1 + · · · + tkqk | ti ∈ R, i = 1, . . . , k} be the linear span of {q1, . . . , qk}. Give
projS(y). Hint. Find the values t1, . . . , tk ∈ R minimizing ∥y − t1q1 − · · · − tkqk∥2.
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6 Matrices

6.1 Checking superposition in Julia. Generate a random 20× 10 matrix A, as well as 10-vectors x and
y, and scalars α and β. Evaluate the two 20-vectors A(αx + βy) and α(Ax) + β(Ay), and verify
that they are very close by printing the norm of the difference. (If the numerical calculations were
done exactly, they would be equal. Due to very small rounding errors made in the floating-point
calculations, they will not be exactly equal.)

Hint. The Julia function rand can be used to generate random scalars, vectors, and matrices.
rand() generates a random number, rand(n) generates a random n-vector, and rand(m,n) gener-
ates a random m× n matrix.

6.2 Vandermonde matrices in Julia. Write a function that takes a positive integer n and an m-vector
t as inputs and generates the corresponding m× n Vandermonde matrix.

6.3 Linear independence. For each of the following matrices, determine which response is correct. You
may not use a computer to answer the questions.

(a)  428 973 −163 245 −784 557
352 869 0 781 −128 120
1047 45 −471 349 −721 781


• The columns are linearly independent.

• The columns are linearly dependent.

• This is not an appropriate question.

(b) 
768 1121 3425 8023

−2095 −9284 5821 −6342
4093 −3490 −7249 8241
834 1428 4392 5835

−7383 1435 2345 −293


• The columns are linearly independent.

• The columns are linearly dependent.

• This is not an appropriate question.

6.4 Difference from trailing three-day rolling average. The n-vector p gives the daily time series of the
price of an asset over n trading days, with n ≥ 4. The (n− 3)-vector d gives the difference of the
current asset price and the average asset price over the previous three trading days, starting from
the fourth day. Specifically, for i = 1, . . . , n − 3, we have di = pi+3 − (pi + pi+1 + pi+2)/3. (Note
that d is an (n− 3)-vector.)

Give the matrix A for which d = Ap, for the specific case n = 6. Be sure to give its size and all
entries.

Remark. Time series similar to d are used in some simple trading schemes, which buy or sell the
asset depending on whether the price is high or low compared to a trailing multi-day rolling average.

6.5 Let s = AT1. What is si, the ith element of s? Express your answer in English.
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6.6 Let P be an m× n matrix and q be an n-vector, where Pij is the price of good j in country i, and
qj is the quantity of good j needed to produce some product. Describe (Pq)i in English.

6.7 Suppose A is an n× n matrix. When is A+AT symmetric? You can answer never, sometimes, or
always. Justify your anwwer.

6.8 Let A be a matrix, and let B =

[
A
I

]
. What can you say about the linear independence of the rows

of B? What can you say about the linear independence of the columns of B? In either case if the
answer depends on the details of the matrix A, explain.

6.9 Suppose Ax = 0, where A is an m× n matrix and x is a nonzero n-vector. Then we can conclude
(choose one)

(a) A = 0.

(b) the rows of A are linearly dependent.

(c) the columns of A are linearly dependent.

(‘We can conclude X’ means that statement X is always true, with no further assumptions about
A.)

6.10 Suppose y = (x, x, x), where x is an n-vector. Give the matrix A for which y = Ax always holds.
Be sure to say that the dimensions of A are.

6.11 Constructing matrices in Julia. In each part below, use Julia to create the matrix A, described by
its effect on an arbitrary vector x as y = Ax. Check that the matrix you create has the correct
behavior when it multiplies a randomly generated vector x.

(a) x is a 5-vector; y = x1:3.

(b) x and y are 4-vectors; y has the entries of x in reverse order.

(c) x is a 4-vector, and y is the 3-vector of differences of consecutive entries of x:

y = (x2 − x1, x3 − x2, x4 − x3)) = x2:4 − x1:3.

(d) x and y are 4-vectors, and yi is the difference between xi and the average of the other 3 entries
of x. For example, y2 = x2 − (x1 + x3 + x4)/3.

6.12 Running average matrix. Suppose the T -vector x represents a time series, with xt its value in
period t, for t = 1, . . . , T . The running average of x is another vector y, with

yt =
1

t
(x1 + · · ·+ xt) , t = 1, . . . , T.

(For example, y1 = x1 and yT = avg(x).)

(a) Find the T × T matrix R for which y = Rx. (We can call R the running sum matrix.) (To
describe R you can say what Rij is, for i, j = 1, . . . , T .)

(b) Which of the following attributes does R have? Symmetric, diagonal, lower triangular, upper
triangular. (You can choose more than one.)
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(c) Give a brief interpretation of your answer to part (b) that does not refer to matrices, but only
to properties of forming the running average.

6.13 Vec and reshape. The Julia command vec(A) takes the entries of an m × n matrix A, and puts
them into an mn vector. It uses so-called column-major order, which means it stacks the first
column of A on top of the second, on top of the third, and so on.

The Julia command reshape takes the entries of a vector or matrix, and puts them into a new
matrix with different dimensions. It has the form B = reshape(A,(p,q)), where A is an m × n
matrix, B is a p × q matrix, and mn = pq. This also uses column-major order, i.e., it takes the
columns one by one from A, and assembles the matrix B column by column. When a is a vector
(i.e., an m×1 matrix), reshape(a,(p,q)) (with pq = m) re-arranges the entries of a into a matrix.
This is the opposite of the vec command.

(a) Apply vec to

A =

[
1 3 5
2 4 6

]
,

and call the result a. Reshape a into a 2× 3 matrix, and verify that you get A.

(b) In a single line of code, express the matrix[
1 2 3 4 5
6 7 8 9 10

]
using only range construction (i.e., 1:10), reshape, and transpose.
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7 Matrix examples

7.1 Equalization in communication. Run the file channel_equalization_data.jl, which will define
a message s, a channel c, and an equalizer h. (Your are welcome to look inside the file to see how
we designed the equalizer.)

Plot c, h, and h ∗ c. Make a brief comment about the channel and equalized channel impulse
responses.

Plot s, y, and ỹ over the index range i = 1, . . . , 100. Is it clear from this plot that ŝ = round(y1:N )
will be worse estimate of s than ŝeq = round(ỹ1:N )?

Report the BER for ŝ (estimating the message without equalization), and for ŝeq (estimating the
message with equalization).

Hint: To round a real vector x to {0, 1} in Julia you can use (x .> 0.5), which yields a Boolean
vector. You can convert it to an integer vector (say, for plotting) by multiplying by 1. That is,
1*(x .> 0.5).

7.2 Convolution in Julia. Use Julia’s conv() function to find the coefficients of the polynomial (1 −
x+ 2x2)4. Hint. Convolution gives the coefficients of the product of two polynomials.

7.3 Audio filtering. When the vector x represents an audio signal, and h is another (usually much
shorter) vector, the convolution y = h ∗x is called the filtered version of x, and h is called the filter
impulse response. Filters can be used to smooth out audio signals (which reduces high frquency
sounds and enhances low frequency sounds), or to sharpen them (which enhances high frequency
sounds and reduces low frequency sounds), as in audio bass and treble tone controls. In this problem
you will experiment with, and listen to, the effects of several audio filters.

The file audio_filtering_original.wav contains a 10-second recording with sample rate of f =
44100/sec. We let x denote the 441000-vector representing this recording. You can read in x and
the sample rate f using the following code:

Pkg.add("WAV")

using WAV

x, f = wavread("audio_filtering_original.wav");

x = vec(x);

To play the signal, run:

wavplay(x, f);

If this not supported on your system, you can write the signal into a file, download the file from
JuliaBox if you are using that, and then listen to it on your machine:

wavwrite(x, f, "filename.wav");

(a) 1ms smoothing filter. Let hsmooth be the 44-vector hsmooth = 1
44144. (The subscript 44 gives

the length of the vector.) The signal hsmooth ∗x is the 1ms moving average of the input x. We
can construct the vector hsmooth and compute the output signal as follows:
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h_smooth = 1 / 44 * ones(44);

output = conv(h_smooth, x);

wavplay(output, f);

Listen to the output signal and briefly describe the effect of convolving hsmooth with x in one
sentence.

(b) Echo filter. What filter (i.e., vector) hecho has the property that hecho ∗ x consists of the
original recording, plus an echo of the original recording 0.25 seconds delayed, with half the
original amplitude? Since sound travels at about 340m/s, this is equivalent to the effect of
hearing an echo from a wall about 42.5m away. Construct hecho using Julia and listen to the
output signal hecho ∗ x to confirm the effect. Form and listen to the signal hecho ∗ hecho ∗ x and
very briefly describe what you hear.

Hint. The entries of the output signal y = hecho ∗ x satisfy yi = xi + 0.5xi−k, where we take
xj = 0 for j outside the range 1, . . . , 441000, and k is the number of samples in 0.25 seconds.

7.4 Another property of convolution. Suppose that a is an n-vector and b is an m-vector that satisfy
a ∗ b = 0. Is it true that either a = 0 or b = 0? If yes, explain why. If no, give a specific example
of a and b, not both zero, with a ∗ b = 0.

7.5 Convolution. What is (1,−1) ∗ (1, 0, 1)?

7.6 Mapping from commitments to cash flow. An investor makes commitments to deals in each year
t = 1, . . . , T , in the amounts u1, . . . , uT , in USD (or more realistically, millions of USD). (These are
nonnegative, but that won’t matter to us.) Commiting an amount ut in year t entitles the investor
to a cash flow of the form

(0t−1, utd, 0T−t),

where the n-vector d gives the deal cash flow shape. (This cash flow is a (T +n− 1)-vector.) Thus
committing an amount ut in period t corresponds to a cash flow that starts in period t with amount
utd1, then in the next period t+ 1, the amount utd2, with the last nonzero cash flow amount utdn
in period t+ n− 1. The investor’s total cash flow is the sum of the cash flows from commitments
made in t = 1, . . . , T . We denote this total cash flow as the (T + n− 1)-vector c.

The deal cash flow shape d typically is negative for the first few entries, which corresponds to
the investor putting money into the deal. The remaining entries of d are typically positive, corre-
sponding to the investor receiving income from their earlier investment. The number 1Td is the
undiscounted profit per USD of commitment. This number is typically positive, meaning that the
investor will get more cash back than they put in. (Otherwise the investor would not invest.) As
an example, consider the deal cash flow shape

d = (−0.1,−0.3,−0.2,+0.3,+0.5,+0.2),

with n = 6. This means that for each USD committed, the investor immediately pays 0.1 USD,
then next year 0.3, and in the third year 0.2. These are investments in the deal. In the fourth,
fifth, and sixth years the investor receives 0.3, 0.5, and 0.2 USD per USD committed. These are
the payoff for the investment. The (undiscounted) profit on this deal is 1Td = 0.4 USD per USD
committed.
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(a) Explain why the cash flow c and commitments u are related as c = u ∗ d. In words: the cash
flow is the convolution of the commitments with the cash flow deal shape. You can explain
this using the specific case n = 2, T = 3.

(b) Find the cash flow associated with the commitments

u = (1, 2, 3, 3, 3)

and the specific deal cash flow shape d given above. (Use conv() in Julia, which requires that
you have the DSP package installed.) Find the net present value (NPV) of the cash flow at
interest rate 8%. (You can read more about NPV on page 22 of the book.)

Remarks. Deals are also called alternative or illiquid investments (since they are not the more
usual stocks and bonds, which are easily traded). Examples include venture funds, direct lending,
infrastructure investing, private equity, and so on. One very important aspect that we ignore in
this problem is that for each deal, the cash flow shape is not known ahead of time, i.e., there is risk
when you commit to a deal. Alternative investments (along with the more usual stocks and bonds)
can be found in the portfolios of pension funds, insurance funds, and unversity endowments, for
example.

7.7 Circular convolution. The circular convolution of two n-vectors a, b is the n-vector c defined as

ck =
n∑

i=1

aib((k−i) mod n)+1, k = 1, . . . , n,

where (k − i) mod n is the remainder of k − i after integer division by n. For example, if n = 4,

c1 = a1b1 + a2b4 + a3b3 + a4b2

c2 = a1b2 + a2b1 + a3b4 + a4b3

c3 = a1b3 + a2b2 + a3b1 + a4b4

c4 = a1b4 + a2b3 + a3b2 + a4b1.

We use the notation c = a⊛b for circular convolution, to distinguish it from the standard convolution
c = a ∗ b defined in the textbook (page 136).

Suppose a is given. Show that a ⊛ b is a linear function of b, by giving a matrix Tc(a) such that
a⊛ b = Tc(a)b for all b.
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8 Linear equations

8.1 Suppose the 5-vector c gives the coefficients of a quartic (degree four) polynomial p(x) = c1+ c2x+
c3x

2 + c4x
3 + c5x

4. Express the conditions

p(0) = p(1), p′(0) = p′(1)

as a set of linear equations of the form Ac = b. Give the sizes of A and b, as well as their entries.

8.2 Linear function? The function f : Rn → Rm is linear. Define another function g : Rn → R by
g(x) = (f(x))1. Is g a linear function? If so, briefly explain why. If not, give a simple counter-
example.

8.3 Which of the following are linear or affine functions f : R2 → R2? For ones which are linear,
express them in the form f(x) = Ax for some specific matrix A. For ones which are affine but not
linear, express them in the form f(x) = Ax+ b for some specific matrix A and vector b.

(a) f(x) = 0

(b) f(x) = (1, 0)

(c) f(x) = (2x1, 0)

(d) f(x) = (−1, x1 − x2)

(e) f(x) = (x2,−x2)

(f) f(x) = (x21, x
2
2)

8.4 Formulate the following problem as a set of linear equations in the form Ax = b. Give the numerical
values of the elements of the 4× 4 matrix A.

Find a polynomial p(t) = x1 + x2t+ x3t
2 + x4t

3 that satisfies the four conditions∫ 1

0
p(t)dt = b1,

∫ 1

0
tp(t)dt = b2,

∫ 1

0
t2p(t)dt = b3,

∫ 1

0
t3p(t)dt = b4.

The numbers b1, b2, b3, b4 on the right-hand sides are given.
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9 Linear dynamical systems

9.1 Predicting growth of US population segments. Use the US population dynamics model from §9.2
of VMLS to predict the growth of the following population segments over the years 2010–2020,
ignoring immigration and emigration, and assuming the birth and death rates remain constant.
Plot the results.

• The total US population.

• The total US population age 65 and older.

• The total US population age 6–18 (i.e., school age).

• The total US population age 19–22 (i.e., college age).

(The number ranges are inclusive, for example, 19–22 means 19, 20, 21, and 22.)

Hints.

• For each subpopulation, find a 100-vector c (different for each subpopulation) for which the
subpopulation is cTx, where x gives the age distribution. Alternatively, you can use slicing
and the sum function, as in sum(x[a:b]), with a and b suitably defined.

• See §9.2 of the VMLS Julia companion for how to get the required data, code examples, and
some critical Julia hints. To simulate the population dynamics, we suggest following the code
segment given in §9.1 of the VMLS Julia companion, which would create a 100× 11 matrix X
with columns giving the population distribution in 2010, . . . , 2020. Then the 11-vector XT c
gives the predicted subpopulation. (You can also use slicing as mentioned above.)

9.2 Simulating epidemic dynamics. In this exercise you will consider the epidemic dynamics example
given in §9.3 of the textbook, with various changes to the dynamics matrix. In each case, coefficients
of the dynamics matrix not mentioned remain the same as in the original example.

For each of the variations described below, give the associated dynamics matrix A. Then simulate
and plot the results over the range t = 1 to t = 210 (the same range as the example in the textbook).
Make a brief comment or two, focussing on the fraction of the population who have died by day
T = 210, and the maximum over time of the fraction of people who are infected.

(a) Lower mortality. Instead of 1% of infected people dying each day, 0.5% do. (To make the
column add up to one, we assume that 85.5% of infected people remain infected.)

(b) Infection control. Extensive mask wearing and social distancing reduces the infection rate
among susceptible people to 3% (from 5%). (The fraction that remains susceptible is then
97%.)

(c) Decaying immunity. Each day, 3% of the recovered people become susceptible. (And 97%
remain in infection state recovered.)

(d) Vaccination. Each day, 1% of the susceptible people are vaccinated, which moves them to
infection state recovered (which in this case isn’t really a good name for the infection state,
since they were never infected). Each day 5% of the susceptible become infected, and 94%
remain susceptible.
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Hint. The matrix A should always have the property that each of its columns sums to one, or in
matrix notation, AT1 = 1. This is because the ith column of A gives the proportions of people in
each of the four infection states in the next period, if the whole population has infection state i
now.

Julia hint. You’ll want to start from the code given in §9.3 of the Julia VMLS companion, which
you can you as a good starting point. We suggest that you create a function sim_plot!(A) that
simulates the epidemic dynamics with the dynamics matrix A and then plots it for T = 210 days,
starting from the same initial state x1 = e1, i.e., everyone susceptible. (You need to use the ! to
indicate that the function will have a side effect, in this case, displaying a plot.)

Remark. Accurate epidemic dynamics models are not linear dynamical systems, so don’t take any
of the results too seriously.
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10 Matrix multiplication

10.1 Matrix multiplication Julia timing test. Determine how long it takes your computer to compute
the product of two n × n matrices for n = 500, 1000, 2000, 4000, and use your result for n = 4000
to estimate (very crudely) how many Gflops/sec your computer can carry out. (Hopefully your
results for the different values of n will give roughly consistent estimates of computer speed.)

The follow code generates two random 500×500 matrices and times the evaluation of their product.
(You might run it a few times; the first time might be a bit slower, since the matrix multiplication
code has to be loaded and compiled.)

A = randn(500,500); B = randn(500,500);

@time C=A*B;

How long would it take a person to carry this out, assuming the person can carry out a floating
point operation every 10 seconds for 8 hours each day?

10.2 Customer purchase history matrix. A store keeps track of its sales of products from K different
product categories to N customers over some time period, like one month. (While it doesn’t matter
for this problem, K might be on the order of 1000 and N might be 100000.) The data is stored in
an N ×K matrix C, with Cij being the total dollar purchases of product j by customer i. All the
entries of C are nonnegative. The matrix C is typically sparse, i.e., many of its entries are zero.

(a) What is C1?

(b) What is CT1?

(c) Give a short matrix-vector expression for the total dollar amount of all purchases, by all
customers.

(d) What does it mean if (CCT )kl = 0? Your answer should be simple English.

(e) Suppose you run k-means on the rows of C, with k = 100. How would you interpret the
centroids z1, . . . , z100?

10.3 State feedback control. Consider a time-invariant linear dynamical system with n-vector state xt
and m-vector input ut, with dynamics

xt+1 = Axt +But, t = 1, 2, . . . .

The entries of the state often represent deviations of n quantities from their desired values, so
xt ≈ 0 is a goal in operation of the system. The entries of the input ut are deviations from the
standard or nominal values. For example, in an aircraft model, the states might be the deviation
from the desired altitude, climb rate, speed, and angle of attack; the input ut represents changes
in the control surface angles or engine thrust from their normal values.

In state feedback control, the states are measured and the input is a linear function of the state,
ut = Kxt. The m × n matrix K is called the state feedback gain matrix. The state feedback gain
matrix is very carefully designed, using several methods. State feedback control is very widely used
in many application areas (including, for example, control of airplanes).
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(a) Open and closed-loop dynamical system. With ut = 0, the system satisfies xt+1 = Axt for
t = 1, 2, . . ., which is called the open-loop dynamics. When ut = Kxt, the system dynamics
can be expressed as xt+1 = Ãxt, for t = 1, 2, . . ., where the n× n matrix Ã is the closed-loop
dynamics matrix. Find an expression for Ã in terms of A, B, and K.

(b) Aircraft control. The longitudinal dynamics of a 747 flying at 40000 ft at Mach 0.81 is given
by

A =


.99 .03 −.02 −.32
.01 .47 4.7 .00
.02 −.06 .40 −.00
.01 −.04 .72 .99

 , B =


0.01 0.99
−3.44 1.66
−0.83 0.44
−0.47 0.25

 ,

where the sampling time is one second. (The state and control variables are described in more
detail in the lecture on control.) We will use the state feedback matrix

K =

[
−.038 .021 .319 −.270
−.061 −.004 −.120 .007

]
.

(The matrices A, B, and K can be found in 747_cruise_dyn_data.jl, so you don’t have
to type them in.) Plot the open-loop and closed-loop state trajectories from several nonzero
initial states, such as x1 = (1, 0, 0, 0), or ones that are randomly generated, from t = 1 to
t = 100 (say). (In other words, plot (xt)i versus t, for i = 1, 2, 3, 4.) Would you rather be a
passenger in the plane with the state feedback control turned off (i.e., open-loop) or on (i.e.,
closed-loop)?

10.4 Student-course matrix. The Stanford registrar has the complete list of courses taken by each
graduating student over several graduating classes. This data is represented by an m × n matrix
C, with Cij = 1 if student i took class j, and Cij = 0 otherwise, for i = 1, . . . ,m and j = 1, . . . , n.
(Thus, there are m students in the data set, and n different courses. For simplicity, we ignore the
possibility that in some circumstances a student can take a course multiple times.)

Answer each of the questions below in English, with no equations, references to matrices or vectors,
and so on. (You can refer to student i and course j, though.)

(a) What is (CTC)kl?

(b) What is (CCT )rs?

(c) What is (CT1)p?

(d) Suppose you cluster the columns of CT using k-means, with k = 50 (say). What do you think
the results might look like? (Your response can be a bit vague, but not more than one or two
sentences.)

(e) (Continuation of part (d).) Suppose z1 is the cluster representative for group 1. What does
(z1)143 = 0.01 mean?

10.5 Suppose A is a 5×10 matrix, B is a 20×10 matrix, and C is a 10×10 matrix. Determine whether
each of the following expressions make sense. If the expression makes sense, give its dimensions.

(a) ATA+ C.

(b) BC3.
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(c) I +BCT .

(d) BT − [C I].

(e) B

[
A
A

]
C.

10.6 Friend matrix. We consider a collection of n people who participate in a social network in which
pairs of people can be connected, by ‘friending’ each other. The n×n matrix F is the friend matrix,
defined by Fij = 1 if persons i and j are friends, and Fij = 0 if not. We assume that the friend
relationship is symmetric, i.e., person i and person j are friends means person j and person i are
friends. We will also assume that Fii = 0. Express the following in matrix/vector notation, briefly
justifying your expression.

(a) t is the n-vector with ti being the total number of friends of person i.

(b) C is the n×n matrix with Cij equal to the number of friends persons i and j have in common.
(Person k is a friend in common of persons i and j if she is a friend of both person i and
person j. The diagonal entry Cii, which is the total number of friends person i has in common
with herself, is the total number of friends of person i.)

10.7 Suppose F TG = 0, where F and G are n × k matrices. Determine whether each of the following
statements must always be true, or can be false. ‘Must be true’ means the statement holds for any
n × k matrices F and G that satisfy F TG = 0, without any further assumptions; ‘can be false’
means that there are n × k matrices F and G that satisfy F TG = 0, but the statement does not
hold.

(a) Either F = 0 or G = 0.

(b) The columns of F are orthonormal.

(c) Each column of F is orthogonal to each column of G.

(d) The matrices F and G are square or tall, i.e., n ≥ k.

(e) The columns of F are linearly dependent.

10.8 Matrix with acute columns. Suppose A is an m × n matrix with nonzero columns a1, . . . , an, and
in addition, any pair of columns makes an acute angle, i.e., |∠(ai, aj)| < 90◦ for all i, j = 1, . . . , n.
What can you say about the entries of the Gram matrix G = ATA?

10.9 Given n-vectors a, b. Which of the following are true?

(a) abT = baT

(b) abT = (baT )T

(c) abT = bTa

(d) aT b = bTa

(e) abT = aT b

10.10 Suppose A is an m×n matrix. Express the sum of all entries of A using matrix and vector notation.
Your solution can include any matrix and vector operations (sum, product, scalar multiplication,
transpose, . . . ), unit vectors, zero vectors, and ones vectors. If you use zeros or ones vectors, you
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must given their dimensions. We will deduct points from correct answers that are more complicated
than they need to be. Recall that we consider a 1× 1 matrix to be the same as a number, so your
solution can be a 1× 1 matrix.

10.11 Square of sum. If A and B are square matrices with the same dimensions, then (A+B)2 =

(a) A2 + 2AB +B2

(b) A2 + 2BA+B2

(c) A2 +AB +BA+B2

(d) all of the above

(e) none of the above

(Choose one.)

10.12 Time to compute the matrix square. A particular computer takes around one second to compute
the square of a 3000×3000 matrix. About how long will it take to compute the square of a 300×300
matrix?

10.13 QR factorization of matrix with orthonormal columns. Suppose the columns of a matrix A are
orthonormal, and we (attempt) to compute its QR factorization A = QR. Which of the following
must be true?

(a) The QR factorization will fail.

(b) R = I

(c) R = A

(d) Q = I

(e) Q = A

10.14 Total economic output in three years. The n-vector xt denotes the economic output of a country in
n different sectors, in year t. An economist models the economic output using a linear dynamical
system model xt+1 = Axt, where A is an n × n matrix. Assuming her model is correct, find an
expression for the total economic output in year t+ 3, in terms of xt and A. (The total economic
output is the sum of the economic output in the n sectors.)

10.15 The n × K data matrix X describes whether each of K items has each of n Boolean attributes:
Xij = 1 means item j has attribute i; otherwise, Xij = 0, which means item j does not have
attribute i. Suppose p and q are integers between 1 and K, and p ̸= q. Express (XTX)pq in simple
English.

10.16 Diagonal pre- and post multiplication. Suppose A is an m × n matrix, D is a diagonal m × m
matrix, and E is a diagonal n× n matrix. Let C = DAE.

What is Cij , in terms of the entries of A, D, and E? We will deduct points for correct answers
that are more complicated than they need to be.

10.17 Matrix dimensions. Suppose A is an m × n matrix, and B is a p × q matrix. For each of the
following equations, give the conditions on m,n, p, q under which it makes sense. For example,
A = B requires that m = p and n = q.
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(a) ATB = I.

(b) AB = 0.

(c) AB = BA.

(d) AT = [B I].

(e) [A B] = I.

10.18 Number of paths of a given length in a directed graph. Consider a directed graph with n nodes,
specified by its n× n adjacency matrix A (see textbook, page 112). What is N , the total number
of paths of length 10 in the graph? (See textbook, §10.3). Give an expression for N that involves
the matrix A and standard matrix operations like matrix-matrix multiplication, matrix powers,
transpose, slicing, matrix-vector multiplication, and standard vectors like 0 and 1. We will give
partial credit for a solution that involves a sum, and full credit for a solution that uses only matrix
and vector notation.

10.19 The adjoint identity. Suppose A is an m × n matrix. Show that for any m-vector u and n-vector
v we have uT (Av) = (ATu)T v. In words: The inner product of u and Av is the same as the inner
product of ATu and v. (Note that these inner products are of vector with different dimensions.)
This equation is called the adjoint identity. (Adjoint is another name for transpose, i.e., AT is
called the adjoint of A.)

10.20 Quadratic form. Suppose P is an n×n matrix. The function f : Rn → R defined as f(x) = xTPx
is called a quadratic form, and generalizes the idea of a quadratic function of a scalar variable, px2.
The matrix P is called the coefficient matrix of the quadratic form.

(a) Show that f(x) =
∑N

i,j=1 Pijxixj . In words: f(x) is the weighted sum of all products of two
components of x, with weights given by the entries of P .

(b) Show that for any x, we also have f(x) = xT (P T )x. In other words, the quadratic form
associated with the transpose matrix is the same function. Hint. Take the transpose of
f(x) = xTPx.

(c) Show that f can be expressed as f(x) = xTP symx, where P symm = (1/2)(P + P T ) is the
symmetric part of P . The matrix P sym is symmetric. So any quadratic form can be expressed
as one with a coefficient matrix that is symmetric.

(d) Express f(x) = −2x21 + 4x1x2 + 2x22 in the form f(x) = xTPx with P a symmetric 2 × 2
matrix.

(e) Suppose that A is anm×nmatrix and b is anm-vector. Show that ∥Ax−b∥2 = xTPx+qTx+r
for a suitable n × n symmetric matrix P , n-vector q, and constant r. (Give P , q, and r.) In
words: The norm squared of an affine function of x can be expressed as the sum of a quadratic
form and an affine function.

10.21 Block matrices. Generate four random 3 by 5 matrices A, B, C, and D.

(a) Verify that [
A B
C D

]T
=

[
AT BT

CT DT

]
.
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(b) Generate four more random 3 by 5 matrices E, F , G, and H. Verify that[
A B
C D

] [
E F
G H

]
=

[
AE +BG AF +BH
CE +DG CF +DH

]
.

You can do this evaluating the lefthand and righthand sides, and computing the norm of the
difference, which should be a really small number.

10.22 Let A be a lower triangular n× n matrix. Verify the following properties.

(a) If B is a lower triangular n× n matrix, then the product AB is lower triangular.

(b) The matrix Ak is lower triangular for all positive integers k.

(c) If A is invertible, then Ak is lower triangular for all integers k (positive or negative).

10.23 Consider a ball on a flat track, where at time t the ball has velocity vt. We approximate this
velocity by the linear dynamical system evolving over time steps t = 1, 2, . . . as

vt+1 = avt + but+1, (1)

where 0 < a < 1 is the acceleration (really, deceleration) from friction, ut+1 is a force applied from
t through t+1 (we use this t+1 indexing to simplify the math later, as usually we would write ut
instead of ut+1). This force is also known as the control action. The mass of the ball is 1/b.

(a) Give the impulse response vector h for this system through time k. That is, give the vector
h ∈ Rk such that if u1 = 1 (meaning we apply a unit positive force at time 0) and v0 = 0, we
have

ht = vt for t = 1, 2, . . . , k.

(b) A finite impulse response. Make the simplifying assumption that if we apply a force ut+1 at
a time t to the ball, its effect on the ball’s velocity follows the dynamics (1) for k steps and
then disappears. That is, assuming ut+1 ̸= 0 while ut+2 = · · · = ut+k+1 = 0, we have

vt+1 = avt + but+1, vt+2 = avt+1, . . . , vt+k = avt+k−1, vt+k+1 = 0.

Give a vector h ∈ Rk such that for any T ∈ {1, 2, . . .} and vector u ∈ RT of forces applied at
times t = 0, 1, . . . , T − 1, the velocities v ∈ Rk+T−1 from times t = 1 through t = k + T − 1
satisfy

v = h ∗ u.

(c) Keeping the notation and simplified dynamics of part (b), we are interested in the position xt
of the ball at time t when we apply a sequence of forces u ∈ RT . Assume that x0 = 0 and
v0 = 0 so the ball starts at rest and its initial position is 0, and that if the ball has velocities
v1, v2, . . . , vt, then its position at time t is

xt = x0 + v0 + v1 + · · ·+ vt−1.

(That is, in each time step t, the ball moves distance vt). Give a matrix A such that the vector
x ∈ RT of positions of the ball at times t = 1, 2, . . . , T satisfies x = A(h ∗ u) given any vector
u ∈ RT of forces, where h is your vector from part (b). Specify the dimensions of A and its
entries.
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11 Matrix inverses

11.1 Rows and columns of a matrix and its inverse. Suppose the n × n matrix A is invertible, with
inverse B = A−1. We let the n-vectors a1, . . . , an denote the columns of A, and bT1 , . . . , b

T
n the rows

of B. Determine whether each of the following statements is true or false, and justify your answer.
True means the statement always holds, with no further assumptions. False means the statement
does not always hold, without further assumptions.

(a) For any n-vector x, we have x =
∑n

i=1(b
T
i x)ai.

(b) For any n-vector x, we have x =
∑n

i=1(a
T
i x)bi.

(c) For i ̸= j, ai ⊥ bj .

(d) For any i, ∥bi∥ ≥ 1/∥ai∥.
(e) For any i and j, bi + bj ̸= 0.

(f) For any i, ai + bi ̸= 0.

11.2 Solving linear equations in Julia. Generate a random 20× 20 matrix A and a random 20-vector b
using the following code:

A = rand(20, 20)

b = rand(20)

(It’s very likely that the matrix you generate will be invertible.)

We solve the linear equation Ax = b, i.e., compute the solution x = A−1b in Julia using several
methods. In each case, you should check that the x you compute satisfies the equations by evaluating
and reporting the norm of the residual, ∥Ax− b∥. (This should be very small.)

(a) Using the backslash operator:

x = A \ b

(b) Computing the inverse of A explicitly:

x = inv(A) * b

(c) Using QR factorization, from the formula x = R−1QT b:

Q, R = qr(A)

x = R \ (Q’ * b)

(You should check that the matrix Q obtained is very nearly orthogonal, R is an upper
triangular matrix, and that A is very near QR.)

11.3 Julia timing test for linear equations.

(a) Determine how long it takes for your computer to solve a system of n = 2000 linear equations
in n = 2000 variables (with invertible coefficient matrix) using Julia’s \ operator. You may
use the following code.
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A = 1 + rand(2000, 2000)

b = ones(2000)

@time A\b;

(b) Julia is rather clever about how it solves systems of equations with \. Determine how long it
takes for your computer to solve the following system of n = 2000 linear equations in n = 2000
variables.

L = 1 + rand(2000, 2000)

for i = 1:2000

for j = i+1:2000

L[i, j] = 0

end

end

b = ones(2000)

@time L\b;

(c) Can you explain why the times differ by so much between the two systems, i.e., what is special
about the matrix L as opposed to A? Make a hypothesis about what you think Julia is doing
behind the scenes.

11.4 Sensitivity of solution of linear equations. Let A be an invertible n× n matrix, and b and x be n-
vectors satisfying Ax = b. Suppose we now perturb the jth entry b by ϵ ̸= 0 (which is a traditional
symbol for a small quantity), which means that b becomes b̃ = b + ϵej . Let x̃ be the n-vector
that satisfies Ax̃ = b̃, i.e., the solution of the linear equations using the perturbed right-hand side.
We are interested in ∥x − x̃∥, which is how much the solution changes due to the change in the
right-hand side.

(a) Show that ∥x− x̃∥ does not depend on b; it only depends on the matrix A, ϵ, and j.

(b) How would you find the index j that maximizes the value of ∥x− x̃∥? By part (a), your answer
should be in terms of A (or quantities dervied from A) and ϵ only.

(c) Try this out in Julia with the following values:

A =

1/2 1/3 1/4
1/3 1/4 1/5
1/4 1/5 1/6

 , b =

11
1

 , ϵ = 0.1.

To prevent numerical imprecision errors, use the following code to build the data.

A = [1/2 1/3 1/4; 1/3 1/4 1/5; 1/4 1/5 1/6]

b = [1.0, 1.0, 1.0]

epsilon = 0.1

Which j do you pick to maximize ∥x − x̃∥, and what value do you get for ∥x − x̃∥? Check
your answer from part (b) by direct calculation (i.e., simply finding x̃ after perturbing entry
j = 1, 2, 3 of b).

11.5 Let A and B be distinct, square n× n matrices that satisfy A5 = B5 and AB4 = BA4. Determine
whether the matrix A4 + B4 is invertible. If it is, give an explicit formula to compute its inverse.
If it is not, provide an explanation.
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Hint: Recall that matrix multiplication distributes over addition.

11.6 Julia for circuit analysis. This problem relates to material from the additional lecture on electrical
circuit analysis, at https://stanford.edu/class/engr108/lectures/circuits.pdf.

(a) Write Julia code that solves for the branch currents and node potentials in the circuit described
on slide 20, and verify the results we report on slide 21.

(b) Write Julia code that finds the resistance matrix R for the circuit given on slide 24, and verify
that it agrees with what we report at the bottom of that slide.

(c) Write Julia code that checks conservation of power, i.e., evaluates P diss = jT v and P ext = iT e,
for the specific example, i.e., the solution of part (b). (They should be the same, except for
small rounding errors.)

Hints.

• First define the important data for the problems, i.e., the matrices A and R (for parts (a)
and (b)), and the vector i (for part (a)).

• Then write generic code that finds j and e (for part (a)), or R (for part (b)), using only these
data. (So your code would actually work for any circuit.)

• To form a stacked vector in Julia from a and b, use [a ; b].

• To form a 2× 2 block matrix in Julia, with subblocks A, B, C, and D, use [A B; C D].

• Use slicing in Julia to extract a subvector from a bigger vector. For example, to get the last
n components of a (b+ n)-vector z, use e = z[b+1:b+n].

11.7 Let a =
[
1 −1

]
. Does a have a left inverse? A right inverse? If not, say so. If so, give one.

11.8 For each statement below, say whether it is true or false. If it is false, give a counter-example.

(a) If a square matrix A has a left inverse, then it has a right inverse.

(b) If a matrix has a left and a right inverse, it must be square.

11.9 Inverse of square. Suppose A is an invertible n × n matrix, with inverse A−1. Is A2 invertible?
If so, given an expression for its inverse (in terms of A and its inverse). If not, give a specific
counter-example of a matrix that is invertible, but its square is not. You do not need to justify
your counter-example, but please do keep it as simple as possible.

11.10 Deducing a cash flow from its net present value under different interest rates. The net present
value (NPV) of a cash flow c = (c1, c2, c3) with interest rate r is c1+ c2/(1+ r)+ c3/(1+ r)2. With
interest rate r = 0, the NPV is 1. With interest rate r = 0.05, the NPV is 0. With interest rate
r = 0.10, the NPV is −1.

Find the cash flow c. You are welcome, indeed encouraged, to use a computer to solve any equations
you might need to.

11.11 Find two different right inverses of the 2 × 3 matrix A =

[
1 −2 0
0 1 2

]
. Hints. We suggest you

solve this by hand. (That’s a suggestion we very rarely make.) You are free to use a computer to
check your answers. There are of course multiple correct answers.
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11.12 Inverse of matrix with positive entries. If a number a is positive, so is its inverse 1/a. Is the same
true for matrices? That is, if an invertible matrix A has all its entries positive, are all the entries
of its inverse positive?

11.13 Polynomial interpolation with derivatives. The 4-vector c contains the coefficients of a cubic poly-
nomial p(x) = c1 + c2x+ c3x

2 + c4x
3.

(a) Express the following conditions on p as a set of linear equations for the coefficients, i.e.,
Ac = b. You must give A and b. The conditions are

p(0) = 0, p′(0) = 1, p(1) = 0, p′(1) = 1.

(b) Solve the equations you set up in part (a), and plot p over the range −0.1 ≤ x ≤ 1.1, checking
that it satisfies the conditions. These equations are readily solved by hand, but feel free to
use Julia instead.

11.14 Two trajectories of a linear dynamical system. The n-vectors x1, . . . , xN , with N > 1, satisfy the
time-invariant linear dynamics xt+1 = Axt for t = 1, . . . , N −1, and the n-vectors z1, . . . , zN satisfy
the same time-invariant linear dynamics zt+1 = Azt for t = 1, . . . , N − 1, where A is the n × n
dynamics matrix.

Which of the following two statements are true, meaning that they always hold, with no other
conditions imposed?

(a) If x1 = z1, then xN = zN . In words: if the two trajectories start in the same state, they will
end in the same state.

(b) If x1 ̸= z1, then xN ̸= zN . In words: if the two trajectories start in different states, they will
end in different states.

We now add the further condition that A is invertible. With this additional assumption, are the
two statements above true?

All together you will give four answers, each True or False, for the two statements above, and
without and with the additional assumption that A is invertible. You do not need to justify your
answers.

Hint. The statement (b) is the same as saying that if xN = zN , then x1 = z1.

11.15 Non-invertibility of a tall-wide matrix product. Suppose that A is an m × n matrix, and B is an
n×m matrix, so C = AB is an m×m matrix. We assume that m > n, so A is tall and B is wide.
We refer to C as a tall-wide matrix product.

Explain why the matrix C is not invertible. In words: a tall-wide matrix product is never invertible.

Hint. Argue by contradiction: first assume that C is invertible, and then derive a contradiction.
You can flesh out the steps below.

• If C is invertible, there is an m×m matrix X for which XC = I.

• It follows that XA is a left inverse of B.

• We know that the wide matrix B cannot have a left inverse, so we have our contradicition.

40



11.16 Deducing system state from component measurements at different times. Consider a linear dynam-
ical system xt+1 = Axt, t = 1, . . . , T , with state dimension n. We measure (i.e., know) the n
numbers (x1)1, (x2)2, . . . , (xn)n, i.e., ith component of the state in period i, for i = 1, . . . , n.

Find the n× n matrix F for which ((x1)1, . . . , (xn)n) = Fx1.

The matrix F depends on A. You can describe F by giving its rows or columns. You can make use
of standard concepts like slicing, rows and columns, unit vectors, matrix powers, transpose, and so
on.

Remark. If F is invertible, this allows us to find the initial state x1 from the component measure-
ments (x1)1, (x2)2, . . . , (xn)n.

11.17 Define a sequence of matrices Ak, for k = 0, 1, 2 . . ., as follows: A0 = 1 and for k ≥ 1,

Ak =

[
Ak−1 Ak−1

−Ak−1 Ak−1

]
.

Therefore Ak is a matrix of size 2k × 2k. The first four matrices in the sequence are

A0 = 1, A1 =

[
1 1

−1 1

]
, A2 =


1 1 1 1

−1 1 −1 1
−1 −1 1 1
1 −1 −1 1

 ,

A3 =



1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
−1 −1 1 1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1

−1 1 1 −1 1 −1 −1 1


.

Show that the matrices Ak are invertible. What is the inverse of Ak?

Hint. Note that the columns of Ak are mutually orthogonal and have norm
√
n where n = 2k.

11.18 (a) Formulate the following problem as a set of linear equations. Find a point x ∈ Rn at equal
distance to n+ 1 given points y1, y2, . . . , yn+1 ∈ Rn:

∥x− y1∥ = ∥x− y2∥ = · · · = ∥x− yn+1∥.

Write the equations in matrix form Ax = b.

(b) Show that the solution x in part (a) is unique if the (n+ 1)× (n+ 1) matrix[
y1 y2 · · · yn+1

1 1 · · · 1

]
is invertible.
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11.19 Let A be an n× n matrix with the property that

|Aii| >
∑
j ̸=i

|Aij |, i = 1, . . . , n.

(The absolute value of each diagonal element is greater than the sum of the absolute values of the
other elements in the same row.) Such a matrix is called strictly diagonally dominant. Show that
A is invertible.

Hint. Consider a vector x with Ax = 0. Suppose i is an index with |xi| = maxj=1,...,n |xj |. Consider
the ith equation in Ax = 0.

11.20 If A and B are invertible matrices of the same size, then AB is invertible with inverse (AB)−1 =
B−1A−1. It is tempting to generalize this to

(AB)† = B†A† (2)

for matrices A and B with linearly independent columns.

(a) First show that (2) is false for

A =

 1 0
0 1
0 1

 , B =

[
1
1

]
.

We conclude that (2) does not necessarily hold for matrices with linearly independent columns.

(b) Next, we make stronger assumptions on A and B. In each of the following two subproblems,
either show that (2) holds, or give a small example for which (AB)† ̸= B†A†. We assume the
dimensions of A and B are compatible, so the product AB is defined.

(i) A has linearly independent columns and B is invertible.

(ii) A is invertible and B has linearly independent columns.

11.21 A square matrix A is called normal if AAT = ATA. Show that if A is normal and invertible, then
the matrix Q = A−1AT is orthogonal.

11.22 When is a matrix lower-triangular and orthogonal? How many n × n matrices with this property
exist?

11.23 Suppose you have to solve two sets of linear equations

Ax1 = b1, ATx2 = b2

where A is n× n, b1 and b2 are n-vectors, and A is invertible. The unknowns are the n-vectors x1
and x2. Describe a method for solving the two equations with a single matrix factorization. What
is the complexity of the method?
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12 Least squares

12.1 Solving least squares problems in Julia. Generate a random 20×10 matrix A and a random 20-vector
b.

(a) Compute the solution x̂ of the associated least squares problem using the methods listed below,
and verify that the solutions found are the same, or more accurately, very close to each other;
they will be very slightly different due to small roundoff errors in the computations.

• Using the Julia backslash operator.

• Using x̂ = (ATA)−1AT b.

• Using x̂ = A†b.

Hints. In Julia, inv() computes the inverse matrix, pinv() computes the pseudo-inverse
matrix, and A\b directly solves the least squares problem.

(b) Let x̂ be one of the solutions found in part (a). Generate a random nonzero 10-vector δ and
verify that ∥A(x̂+ δ)− b∥2 > ∥Ax̂− b∥2. Repeat several times with different values of δ; you
might try choosing a small δ (say, by scaling the original random vector).

Be sure to submit your code, including the code that checks if the solutions in part (a) are close to
each other, and whether the expected inequality in part (b) holds.

12.2 Julia timing test for least squares. Determine how long it takes for your computer to solve a least
squares problem with m = 100000 equations and n = 100 variables. (You can use the backslash
operator.)

Remark. Julia compiles just in time, so you should run the code a few times to get the correct
time.

12.3 Active noise cancellation. Active noise cancellation is used to reduce the noise level heard at a
specific reference location. This is done using several microphones that pick up ambient noise, a
loudspeaker near the reference loction, and a microphone that monitors the sound at the reference
location. The signals from the ambient noise microphones are combined, added to the desired signal,
and played through the loudspeaker in such a way that the noise heard at the reference location
is cancelled, or at least reduced. In real active noise cancellation systems the noise microphone
signals are convolved with filters before being added, but we will consider here a simplified setup
in which a simple linear combination of them is played through the speaker. We will also assume
here that the speaker is perfect.

Here is a mathematical description of the method. We let the scalar time series y1, y2, . . . denote the
desired signal, which we know. We let the scalar time series c1, c2, . . . denote the noise cancellation
signal, which we will create. We play the signal yt + ct through the loudspeaker. At the reference
location we hear yt + ct + nt, where n1, n2, . . . is a noise signal that we do not know. If we can
choose ct so that ct + nt ≈ 0, then we have achieved (approximate) noise cancellation.

The K ambient noise signals are given by the K-vector time series a1, a2, . . .. We use ct = θTat,
where the K-vector θ gives the coefficients for combining the ambient noise microphone signals to
form the noise cancellation signal. Our goal is to choose θ so that θTat + nt ≈ 0.

Here is how we will choose θ. We use a training period, say, t = 1, . . . , T . We send nothing
(i.e., the zero signal) to the loudspeaker, and record the noise ntrain

1 , . . . , ntrain
T using the reference
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microphone. We also record the ambient noise signals atrain1 , . . . , atrainT . We then choose θ to

minimize
∑T

t=1(θ
Tatraint + ntrain

t )2.

Once we have θ̂ we are ready to deploy noise cancellation. We send yt + θ̂Tat to the loudspeaker,
and we hear yt + θ̂Tat + nt at the reference location.

(In real active noise cancellation systems, the weights are updated continuously, while the desired
signal is playing.)

The file anc_data.jl contains data for an active noise cancellation problem. When you execute
this file it will include the audio files. It also contains some helper code for writing out a vector as
an audio file, which you can then listen to. You will find the following signals:

• For training, a T -vector n and the K × T matrix a, which you will use to determine θ. Be
sure to listen to the noise signal, and the individual rows of a, which give the ambient noise
microphone signals. You can check your active noise cancellation by forming and then listening
to nt+ θ̂Tat. (This should sound quieter than nt, which is what you would hear without active
noise cancellation.)

• For testing, we give you some test signals y_plus_n_test, which gives yt + nt (over the test
interval), and a_test, a matrix which gives at (over the test interval). To test your θ̂, you
should form and listen to yt + θ̂Tat + nt. Compare this to what yt + nt sounds like.

12.4 Transit system tomography. An urban transit system (say, a subway) consists of n links between
pairs of stations. Each passenger enters the system at an origin station, traverses over a sequence
of the links, and then exits the system at their destination station. The fare collection system keeps
track of the following information for passenger i: si, the trip starting time (when she enters the
origin station), measured in minutes after 6AM, fi, the trip finishing time (when she leaves the
destination station), and the sequence of links over which she traveled. For example, si = 128,
fi = 144, and link list (3, 7, 8, 10, 4) means the passenger entered the origin station at 8:08AM, left
the destination station at 8:24AM, and traversed links 3, 7, 8, 10, 4, in that order. The total trip
time is fi − si.

We model the trip time as the sum of the delays over the links the passenger traverses. We let di
denote the delay associated with link i, for i = 1, . . . , n. We do not know the link delays, but wish
to estimate them, based on the passenger information described above, for a very large number m
of passengers passing through the system.

We will do this using least-squares. We choose our estimate d̂ of the n-vector of link delays as the
minimizer of the norm squared of the residual of our trip time model. In other words, we choose d̂
to minimize ∥Rd− c∥2, for some m× n matrix R and some m-vector c.

Say what R and c are. (That is, give all their entries.)

12.5 Suppose A is a tall matrix with linearly independent columns, and let x̂ denote the least squares
approximate solution of the over-determined set of equations Ax = b. Determine if each of the
following statements is true or false. (True means that it must hold, with no other assumptions
about A, b, or x̂.)

(a) Ax̂ = b.

(b) Ax̂ ̸= b.
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(c) If x̂ = 0, then b is orthogonal to the columns of A.

(d) If Ax̂ ̸= b, then the system of equations Ax = b does not have a solution.

(e) ∥Ax̂− b∥ ≤ ∥b∥.

12.6 Estimating a vector from noisy measurements of sums of pairs of entries. We wish to estimate a
4-vector x, given noisy measurements of all pairs of its entries, i.e., yi,j ≈ xi+xj , for 1 ≤ i < j ≤ 4.
(The numbers yi,j are given.) You will estimate x by minimizing the sum of squares of the residuals
xi + xj − yi,j over all such pairs. Express this objective in the form ∥Ax− b∥2, for an appropriate
matrix A and vector b. You must state the dimensions of A and b, and given their entries.

Hint. There are six pairs of entries.

12.7 Constructing a portfolio of bonds to approximate a sequence of liabilities. A business has a (pre-
dicted) sequence of monthly liabilities (payments it must make) over 10 years, given by the 120-
vector l. The business will purchase 20 different bonds, with quantities given by the 20-vector q.
Bond i is associated with a sequence of monthly coupon payments given by the 120-vector ci.

(There are many different types of bonds, with different coupon payments. Some pay every month;
others pay every 6 or 12 months. Each bond has a maturity date, after which the coupon payments
are zero. But you don’t need to know this.)

Let p denote the 120-vector of total coupon payments from the bonds. It is given by p = q1c1 +
· · ·+ q20c20. The bond quantities will be chosen by minimizing ∥l− p∥2, which means we are trying
to match the payments to the liabilities. Explain how to set this up as the problem of minimizing
∥Aq − b∥2, where A is a matrix and b is a vector. You must say what A and b are, and give their
dimensions.

Remark. The liabilities are nonnegative, as are the coupon payments, but we ignore that here.

12.8 Constant input that minimizes the state norm in N periods. Consider the linear dynamical system
xt+1 = Axt +But, where the state xt is an n-vector and the input ut is an m-vector, with m < n.
Suppose we apply a constant input w in periods t = 1, . . . , N − 1, i.e., u1 = u2 = · · · = uN−1 = w.
What is the value of w that minimizes ∥xN∥2? We are expecting a formula for w that involves A,
B, N , and x1. You can use the pseudo-inverse in your formula. You can assume that a matrix
arising in your formula has linearly independent columns.

Hint. First derive an expression for xN in terms of w and A, B, N , and x1.
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13 Least squares data fitting

13.1 Saving TA time using midterm score prediction. The TAs very carefully graded all problems on all
students’ midterms. But suppose they had just graded the first half of the exam, i.e., problems 1–5,
and used a regression model to predict the total score on each exam.

The matrix of midterm scores is available on the midterm page on the course web site. There rows
correspond to students (in random order, anonymized), and the columns to midterm questions.

(a) Find the average and standard deviation of the total midterm scores. Find the average and
standard deviation for each individual midterm problem.

(b) Here is a very simple way to predict the total score based on the 5 scores for first half of the
exam: Sum the 5 first half scores, and double the result. What RMS prediction error does
this simple method achieve?

(c) Find a regression model that predicts the total score based on the 5 scores for problems 1–5.
Give the coefficients and briefly interpret them. What is the RMS prediction error of your
model?

(Just for fun, evaluate the predictor on your own exam score. Would you rather have your
actual score or your predicted score?)

Remark. Your dedicated ENGR108 teaching staff would never do anything like this. Really.

13.2 Moore’s law. These numbers are available in the Julia file moore_data.jl In this data file, t is the
first column of the table (introduction year) and N is the second column (number of transistors).
Hint. In Julia, the function log10 is log10.

13.3 Auto-regressive time series prediction. Suppose that x is an N -vector representing time series data.
The (one step ahead) prediction problem is to guess xt+1, based on x1, . . . , xt. We will base our
prediction x̂t+1 of xt+1 on the previous M values, xt, xt−1, . . . , xt−M+1. (The number M is called
the memory length of our predictor.) When the prediction is a linear function,

x̂t+1 = β1xt + β2xt−1 + · · ·+ βMxt−M+1,

it is called an auto-regressive predictor. (It is possible to add an offset to x̂t+1, but we will leave it
out for simplicity.) Of course we can only use our auto-regressive predictor for M ≤ t ≤ N − 1.

Some very simple and natural predictors have this form. One example is the predictor x̂t+1 = xt,
which guesses that the next value is the same as the current one. Another one is x̂t+1 = xt + (xt −
xt−1), which guesses what xt+1 is by extrapolating a line that passes through xt and xt−1.

We judge a predictor (i.e., the choice of coefficients βi) by the mean-square prediction error

J =
1

N −M

N−1∑
t=M

(x̂t+1 − xt+1)
2.

A sophisticated choice of the coefficients βi is the one that minimizes J . We will call this the
least-squares auto-regressive predictor.
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(a) Find the matrix A and the vector b for which J = ∥Aβ − b∥2/(N − M). This allows you
to find the coefficients that minimize J , i.e., the auto-regressive predictor that minimizes the
mean-square prediction error on the given time series. Be sure to give the dimensions of A
and b.

(b) For M = 2, . . . , 12, find the coefficients that minimize the mean-square prediction error on
the time series x_train given in time_series_data.jl. The same file has a second time
series x_test that you can use to test or validate your predictor on. Give the values of the
mean-square error on the train and test series for each value of M . What is a good choice of
M? Also find J for the two simple predictors described above.

Hint. Be sure to use the toeplitz function contained in time_series_data.jl. It’ll make
your life alot easier. Documentation for the function is also contained in time_series_data.jl.

13.4 Modeling class attendance. A university registrar keeps track of class attendance, measured as a
percentage (so 100 means full attendance, and 30 means 30% of the students attend). For each
class lecture, she records the attendance y, and several features:

• x1 is the day of week, with Monday coded as 1 and Friday coded as 5.

• x2 is the week of the quarter, coded as 1 for the first week, and 10 for the last week.

• x3 is the hour of the lecture, with 8AM coded as 8, and 4PM coded as 16.

• x4 = max{T − 80, 0}, where T is the outside temperature (so x4 is the number of degrees
above 80◦F).

• x5 = max{50 − T, 0}, where T is the outside temperature (so x5 is the number of degrees
below 50◦F).

(These features were suggested by a professor who is an expert in the theory of class attendance.)
An ENGR108 alumna carefully fits the data with the following regression model,

ŷ = −1.4x1 − 0.3x2 + 1.1x3 − 0.6x4 − 0.5x5 + 68.2,

and validates it properly.

Give a short story/explanation, in English, of this model.

13.5 Nonlinear auto-regressive model. We have a (scalar) time series z1, z2, . . . , zT . The following one
step ahead prediction model is proposed:

ẑt+1 = θ1zt + θ2zt−1 + θ3ztzt−1,

where θ = (θ1, θ2, θ3) is the model parameter vector. The sum of the squares of the prediction error
of this model on the given time series is

T−1∑
t=2

(ẑt+1 − zt+1)
2.

(Note that we must start this sum with t = 2, since z0 and z−1 are not defined.) Express this
quantity as ∥Aθ − b∥2, where A is a (T − 2) × 3 matrix and b is a (T − 2)-vector. (You must say
what the entries of A and b are. They can involve the known data z1, . . . , zT .)
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Remark. Finding A and b is the first step in fitting the parameters θ to the data. We are not
asking you to find θ, but only to set up the least squares problem you’d solve to carry out the least
squares fit.

13.6 Lecture attendance, laptops in lecture, and final grade. A study collects data on a large number of
students in a lecture course, with the goal of predicting the effect (or at least the association) of
lecture attendance and laptop use on the final exam grade. The regressor is the 2-vector x, where
x1 is the student’s lecture attendance, expressed as a number between 0 and 1 (with, say, 0.78
meaning the student attended 78% of the lectures), and x2 is a Boolean feature that codes whether
or not the student routinely used a laptop during lecture, with x2 = 0 meaning she did not, and
x2 = 1 meaning that she did. The outcome variable y is the student’s final exam grade, scaled to
be between 0 and 100 points. A basic regression model ŷ = xTβ + v is fit to the data, and checked
with out-of-sample validation.

(a) Give a one sentence interpretation of β1.

(b) Give a one sentence interpretation of β2.

(c) Suggest a value of β1 that would not surprise you, and give a one sentence explanation that
might be appropriate if the value of β1 were your value.

(d) Suggest a value of β2 that would not surprise you, and give a one sentence explanation that
might be appropriate if the value of β2 were your value.

For parts (c) and (d) we are looking for a plausible guess of the values, along with a plausible story
that would go along with your guessed value.

13.7 A daily time series of demand for some product, denoted yt for day t, has been standardized
based on its historical average and standard deviation, so yt = 0 means the demand on day t has
its historical average value, and yt = −1 means the demand is one standard deviation below its
historical average. When yt is positive, say bigger than 0.3 or so, we say it is high demand day,
and when yt is negative, say smaller than −0.3 or so, we say it is a low demand day.

A data scientist develops a regression model ŷt+1 = xTt β + v that predicts tomorrow’s demand
yt+1 from the following two features: (xt)1 = yt is today’s demand, and (xt)2 = 1 if tomorrow is a
weekday, and (xt)2 = 0 if tomorrow is a weekend or official holiday. She finds that the model makes
reasonably good predictions on test data, with RMS error around 0.1. Her model coefficients are
β = (0.8,−0.2), v = 0.1. Based on her model, which of the following statements are reasonable?

(a) High demand days are typically followed by high demand days.

(b) Low demand days are typically followed by high demand days.

(c) Demand is typically much higher on weekends and holidays, compared to weekdays.

(d) Demand typically decreases a bit on weekdays, compared to weekends and holidays.

13.8 Fitting a piecewise linear function to data. We are given some samples (xi, yi), i = 1, . . . , N , with
xi and yi scalars, with a function of the form form

ŷ = f̂(x) = θ1 + θ2min{x, 0}+ θ3max{x, 0},

where θ = (θ1, θ2, θ3) contains the parameters. The function f̂ is affine for x ≤ 0, and also for
x ≥ 0, and it is continuous at x = 0 with value θ1. Such a function is called piecewise affine, or
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more commonly, piecewise linear, with a single knot or kink point at 0. We choose the parameters
using the least squares fit on the given data points.

Consider the specific data set of (x, y) pairs

(−2, 3), (−1, 1), (0, 1), (1, 2), (1, 1).

Give the matrix A and vector b for which the sum of squares of the fitting errors is equal to
∥Aθ − b∥2. We want the explicit numerical values of A and b. We are not asking you to solve the
least squares problem, i.e., find the θ̂ = A†b.

13.9 Least squares interpolation. Suppose the N -vector z represents a time series. Interpolation refers
to guessing the value zt from other values of zτ , for τ both smaller than t (i.e., past values) and
also τ larger than t (i.e., the future). (When we guess zt based on values zτ for τ < t, we call it
prediction.)

We consider an interpolator that uses the two values before and after zt to guess zt. It has the form

ẑt = θ1zt−2 + θ2zt−1 + θ3zt+1 + θ4zt+2, t = 3, . . . , N − 2.

(There is nothing special about using two values before and after t; this interpolation method is
easily extended to using any number of values before, and any number of values after, t.)

We will use least squares to fit the parameters θ = (θ1, . . . , θ4), using the time series z as our
training data. That is, we choose θ to minimize the sum square error

N−2∑
t=3

(ẑt − zt)
2.

For the specific case N = 9, express this as ∥Aθ− b∥2, where A is a matrix and b is a vector. Give
the size of A and b, and all of their entries (which can involve the entries of the time series z).
Note. In practice, you’d probably want to fit this model on a time series with a larger value of N .

13.10 Sign-dependent regression model. Consider a fitting problem with a single scalar feature x and
outcome y. A simple regression model has the form ŷ = βx+ v, with model parameters (scalars) β
and v. A sign-dependent regression model treats the feature x differently when it is negative and
positive:

ŷ = β1min{x, 0}+ β2max{x, 0}+ v,

with parameters β1, β2, and v. (You can think of this as simple feature engineering, where we
create two new features from the one original feature.)

The simple regression model and the sign-dependent regression model are fit using least squares on
the same training data set, and both are evaluated on the same test set. (You can assume that the
matrices arising in the two fitting problems have linearly independent columns.)

Which of the following statements are true, i.e., always hold?

(a) The training RMS error of the sign-dependent model is at least as small as the training RMS
error of the simple regression model.

(b) The test RMS error of the sign-dependent model is at least as small as the test RMS error of
the simple regression model.
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Which of the following statements are reasonable? (Meaning, do you agree with the statement?)

(c) The sign-dependent model is more expressive than the simple regression model, and so should
always be used.

(d) The sign-dependent model will likely be over-fit, so we should always use the simple regression
model.

(e) Validation or cross-validation should be used to determine which of the two models to use.

13.11 Basis functions with non-overlapping support. Consider a linear in the parameters prediction model
of the form

ŷ = θ1f1(x) + · · ·+ θpfp(x),

where the n-vector x is the feature vector, the scalar ŷ is our prediction, θ1, . . . , θp are the model
parameters, and fi : R

n → R, i = 1, . . . , p are the basis functions. The support of a function is
the set of points where its value is nonzero. We say that two basis functions fi and fj , with i ̸= j,
have non-overlapping support if there is no x for which both are nonzero, i.e., if fi(x)fj(x) = 0 for
all x. As a simple example with n = 1, consider f1(x) = max{x, 0} and f2(x) = min{x, 0}.
Now consider a set of data with N samples, x(1), . . . , x(N), y(1), . . . , y(N), and let A denote the
associated data matrix, with Aij = fj(x

(i)) for i = 1 . . . , N and j = 1, . . . , p. (See (13.1) on page
247 of the book.) Let G = ATA be the associated Gram matrix. If basis functions fi and fj have
non-overlapping support, what can you say about Gij? Be as specific as you can.

13.12 The figure shows a planar spiral inductor, implemented in CMOS, for use in RF circuits. The
inductor is characterized by four key parameters:

• n, the number of turns (which is a multiple of 1/4, but that needn’t concern us)

• w, the width of the wire

• d, the inner diameter

• D, the outer diameter.

D

d

w

The inductance L of such an inductor is a complicated function of the parameters n, w, d, and
D. It can be found by solving Maxwell’s equations, which takes considerable computer time, or by
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fabricating the inductor and measuring the inductance. In this problem you will develop a simple
approximate inductance model of the form

L̂ = αnβ1wβ2dβ3Dβ4 ,

where α, β1, β2, β3, β4 ∈ R are constants that characterize the approximate model. (Since L is
positive, we have α > 0, but the constants β2, . . . , β4 can be negative.) This simple approximate
model, if accurate enough, can be used for design of planar spiral inductors.

The file inductordata.jl contains data for 50 inductors, obtained from measurements. The Julia
command include("inductordata.jl") creates 5 vectors n, w, d, D, L of length 50. The ith
elements of these vectors are the parameters ni, wi (in µm), di (in µm), Di (in µm) and the
inductance Li (in nH) for inductor i. Thus, for example, w13 gives the wire width of inductor 13.
Your task is to find α, β1, . . . , β4 so that

L̂i = αnβ1
i wβ2

i dβ3
i Dβ4

i ≈ Li, i = 1, . . . , 50.

Your solution must include a clear description of how you found your parameters, as well as their
actual numerical values. Note that we have not specified the criterion that you use to judge the
approximate model (i.e., the fit between L̂i and Li); we leave that to your judgment.

We can define the percentage error between L̂i and Li as

ei = 100
|L̂i − Li|

Li
.

Find the average percentage error for the 50 inductors, i.e., (e1 + · · · + e50)/50, for your model.
(We are only asking you to find the average percentage error for your model; we do not require
that your model minimize the average percentage error.)
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14 Least squares classification

14.1 Trading off false positive and false negative rates. In this problem you use the Boolean least squares
classifier with skewed decision point, described on pages 223-224 of the textbook, to alter the false
positive and false negative rates. The classifier is f̂(x) = sign(f̃(x) − α), where f̃ is the (real-
valued) least squares predictor of the labels encoded as ±1, and α is a constant that skews the
decision point. We will use basic regression, i.e., f̃(x) = xTβ + v.

(a) Basic classifier. The file classifier_with_tradeoff_data.jl contains train and test sets
X_train, X_test, and the corresponding labels y_train and y_test. Find the model param-
eters β and v using the training data set, and give the confusion matrix for the associated
classifier (with α = 0) for both the training and test sets. Give the error rate for the train
and test sets.

(b) ROC curve from skewed decision point classifier. The ROC curve plots the performance of
different classifiers with the vertical axis showing the true positive rate, and the horizontal axis
showing the false positive rate. (See textbook, page 226.) Give ROC plots for the training
and test data sets, for the skewed decision point classifier, for 20 values of α ranging from
−0.3 to +0.3. (You will use the values of β and v found in part (a).)

Julia hints.

• If y_til is the vector ỹ (the continuous regression prediction), you can find sign(ỹ−α) using
sign(y_til-alpha).

• To find the number of true positives, you can use sum((y_true .== 1) & (y_hat .== 1)).
(Similar constructions give the number of false positives, false negatives, and so on.)

14.2 Equalizer design from training message. (Continues book exercise 14.10.) The file eq_design_data.jl
contains the training message str, the value of n, and the signal received from the training message,
ytr. Your first task is to design an equalizer h using this data, and plot it.

The file also includes the received signal y from a message s that is sent. First, take the sign of y
to get an estimate of the message, and print it as a string. Then estimate the message s using your
equalizer, and print it as text. You’ll know when your equalizer is working.

Hints.

• In Julia you can take the sign of a vector using sign.(x).

• You can turn a Boolean vector with entries encoded as −1 and 1 into a string using the
function binary2string. (While not needed for this problem, the function string2binary

converts a string to a Boolean vector.)

14.3 Iris classification. In this exercise you will develop and test a 3-class classifier for classifying the
flower Iris into three species: iris setosa, iris versicolor, and iris virginica, which we will refer to as
classes 1, 2, and 3, respectively. The classifier will use n = 4 features:

x = (sepal length, sepal width, petal length, petal width) .

(You don’t need to know what these are.) The data set, which contains 150 examples, is a classic
one, first published in 1936 by the famous statistician Ronald Fisher. (At the very least, you might
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think about how much fun it would be to carry out the calculations needed in this exercise in 1936,
by hand.)

You will find the data set in iris_flower_data.jl. You can use the first 100 examples (2/3) for
training, and the last 1/3 for testing. (We have randomized the order of the examples in the data
set given.)

(a) Find 3 least squares regression classifiers, each one classifying one of the species against the
other two. Give the error rate for each classifier, on both the train and test sets.

(b) Combine the three classifiers of part (a) into a 3-class classifier, and give the 3× 3 confusion
matrix for the train and test sets.

Hints. The Julia code snippet 2(y .== k) - 1might be useful. This checks if each entry of vector y
is equal to k. If it is, then the result for that entry is 1; otherwise it is -1. Additionally, it may be use-
ful to consult our helper file, iris_multiclass_helpers.jl. We have provided you two functions.
The first is argmax_by_row(A), which computes and returns a column vector x, where xi is the in-
dex of the maximum entry in the ith row of A. The second is confusion_matrix(y_hat, y_true),
which computes and returns a confusion matrix C. For example, C11 is the number of predictions
where your classifier correctly predicted that the flowers belong to class 1, iris setosa.

14.4 Modifying a classifier. A co-worker develops a classifier of the form ŷ = sign(xTβ + v), with
v < 0, where the n-vector x is the feature vector, and the n-vector β and scalar v are the classifier
parameters. The classifier is evaluated on a given test data set. The false positive rate is the
fraction of the test data points with y = −1 for which ŷ = 1. (We will assume there is at least one
data point with y = −1.)

Are each of the following statements true or false? True means it always holds, with no other
assumptions on the data set or model; false means that it need not hold.

(a) Replacing v with zero will reduce, or not increase, the false positive rate.

(b) Replacing β with zero will reduce, or not increase, the false positive rate.

(c) Halving v (i.e., replacing v with v/2) will reduce, or at least not increase, the false positive
rate.

(d) Halving β (i.e., replacing β with (1/2)β) will reduce, or at least not increase, the false positive
rate.

14.5 A least squares classifier ŷ = sign(xTβ+ v) achieves false positive rate 0.07 and false negative rate
0.15 on the training set, and false positive rate 0.08 and false negative rate 0.14 on a test set. To
reduce the false negative rate, how should we adjust the offset v? Increase it or decrease it?

14.6 Confusion matrix from error rates. A Boolean classifier is tested on a set of data with a total
number of data points N , broken down into the confusion matrix entries: Ntp true positives, Nfn

false negatives, Nfp false positives, and Ntn true negatives, with Ntp +Nfn +Nfp +Ntn = N .

The classifier achieves an error rate E, a true positive rate T , and a false positive rate F , defined
as

E = (Nfp +Nfn)/N, T = Ntp/(Ntp +Nfn), F = Nfp/(Nfp +Ntn).
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Can we recover the confusion matrix entries Ntp, Nfn, Nfp, and Ntn from N , E, T , and F? The
answer is yes.

Express the relations given above as a square set of linear equations in the 4-vector x = (Ntp, Nfn, Nfp, Ntn),
in the form Ax = b. Give A and b. Their entries can depend on N , E, T , and F . We will take
points off for answers that are correct but more complicated than they need to be.

Note. We are not asking you to analytically solve this set of equations, or to justify that A is
invertible.
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15 Multi-objective least squares

15.1 Trading off tracking error and input size in control. A system that we want to control has input
(time series) n-vector u and output (time series) y, related by convolution: y = h ∗ u, where h
is an m-vector. (So y is an (n +m − 1)-vector.) (See §15.2 in the textbook.) We are given ydes,
the (time series of) desired or target output values, and we will choose the input u to minimize
∥y−ydes∥2+λ∥u∥2, where λ > 0 is a parameter we use to trade off tracking error (i.e., ∥y−ydes∥2)
and input size (i.e., ∥u∥2).
We will consider the case where n = 100, m = 7, with

h = (0.3, 0.5, 0.6, 0.4, 0.3, 0.2, 0.1).

The desired output is the 106-vector

ydest =


10 10 ≤ t < 40
−5 40 ≤ t < 80
0 otherwise.

(a) Plot a trade off curve of the RMS tracking error (rms(y − ydes)) versus the input RMS value
(rms(u)). As usual with trade-off curves, you should vary λ over a wide range, using values
that are logarithmically spaced (i.e., by a constant factor).

(b) Pick 3 values of λ that correspond to too little regularization, too much regularization, and
a reasonable amount of regularization. (Reasonable might correspond to RMS tracking error
around 0.3) Plot the input u found for each choice of λ on the same figure. Also plot the
output y found for each λ on the same figure, along with ydes.

Julia hints.

• You will find the following Julia function logspace useful for creating a set of values of λ.

logspace(start, stop, length=10)=10.^(range(start, stop=stop, length=length))

• You can use the function toeplitz in the VMLS package to express the convolution y = h ∗u
as a matrix vector multiplication, y = Au for some matrix A.

15.2 Least squares classification with regularization. You will start by generating synthetic (simulated)
data that contains feature n-vectors x1, . . . , xN , and the associated binary labels, y1, . . . , yN , each
of which is either +1 or −1. The feature vectors are stored as an n × N matrix X with columns
x1, . . . , xN , and the labels are stored as an N -vector y. You’ll create both a training and test data
set using the code below.

Random.seed!(1)

n = 50;

N = 300;

N_test = 100

# Generate training data X, y

b_true = randn(n);
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v_true = 5;

X = randn(n, N)

y = sign.(X’*b_true + v_true + 10*randn(N))

# Generate test data X_test y_test

X_test = randn(n, N_test)

y_test = sign.(X_test’*b_true + v_true + 10*randn(N_test))

(a) Least squares classifier. Find β, v that minimize
∑N

i=1(x
T
i β+v−yi)

2 on the training set. Our

predictions are then f̂(x) = sign(xTβ+v). Report the classification error on the training and
test sets, the fraction of examples where f̂(xi) ̸= yi. There is no need to report the β, v values.

(b) Regularized least squares classifier. Now we add regularization to improve the generalization
ability of the classifier. Find β, v that minimize

N∑
i=1

(xTi β + v − yi)
2 + λ∥β∥2,

where λ > 0 is the regularization parameter, for a range of values of λ. We suggest the range
10−1 to 104, say, 100 values logarithmically spaced. Plot the training and test set errors versus
λ with a logarithmic horizontal axis. Suggest a reasonable choice of λ. Again, there is no need
to report the β, v values; just attach the plot and give a reasonable value of λ.

Julia hints.

• You might create a function error_rate(y,yhat) such as

error_rate(y,yhat) = sum(y.!=yhat)

• You will find the following function useful for generating an array of values that are logarith-
mically spaced between two values:

logspace(start, stop, length=10)=10.^(range(start, stop=stop, length=length))

• To create a plot with a logarithmic horizontal scale, use something like

plot(lambdas, errors, xaxis=:log)

15.3 Estimating the elasticity matrix. In this problem you create a standard model of how demand varies
with the prices of a set of products, based on some observed data. There are n different products,
with (positive) prices given by the n-vector p. The prices are held constant over some period, say, a
day. The (positive) demands for the products over the day is given by the n-vector d. The demand
in any particular day varies, but it is thought to be (approximately) a function of the prices. The
units of the prices and demands don’t really matter in this problem. Demand could be measured
in 10000 units, and prices in $100.

The nominal prices are given by the n-vector pnom. You can think of these as the prices that
have been charged in the past for the products. The nominal demand is the n-vector dnom. This
is the average value of the demand, when the prices are set to pnom. (The actual daily demand
fluctuates around the value dnom.) You know both pnom and dnom. We will describe the prices by
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their (fractional) variations from the nominal values, and the same for demands. We define δp and
δd as the (vectors of) relative price change and demand change:

δpi =
pi − pnomi

pnomi

, δdi =
di − dnomi

dnomi

, i = 1, . . . , n.

So δp3 = +0.05 means that the price for product 3 has been increased by 5% over its nominal value,
and δd5 = −0.04 means that the demand for product 5 in some day is 4% below its nominal value.

Your task is to build a model of the demand as a function of the price, of the form

δd ≈ Eδp,

where E is the n× n elasticity matrix.

You don’t know E, but you do have the results of some experiments in which the prices were
changed a bit from their nominal values for one day, and the day’s demands were recorded. This
data has the form

(p1, d1), . . . , (pN , dN ),

where pi is the price for day i, and di is the observed demand.

Explain how you would estimate E, given this price-demand data. Be sure to explain how you will
test for, and (if needed) avoid over-fit.

Hint. You might find it easier to separately fit the models δdi ≈ ẽTi δ
p, where ẽTi is the ith row of E.

(We use the tilde above ei to avoid conflict with the notation for unit vectors.)

Carry out your method using the price and demand data in the matrices Prices and Demands,
found in price_elasticity.jl. Give your estimate Ê, and guess (roughly) how accurate your
model δd = Êδp might be (in terms of RMS prediction error) on unseen data.

Here are some facts about elasticity matrices that might help you check that your estimates make
sense (but you don’t need to incorporate this information into your estimation method). The
diagonal entries of E are always negative, and typically on the order of one. (This means that
when you raise the price of one product only, demand for it goes down by a similar fractional
amount as the price increase.) The off-diagonal entries can have either sign, and are typically (but
not always) smaller than one in magnitude.

15.4 Regularized least squares in Julia. You are asked to write some Julia code to compute the x̂ that
minimizes ∥Ax − b∥2 + λ∥x∥2, where A is an m × n matrix, b is an m-vector, and λ is a positive
scalar. These are given as the Julia quantities A, b, and lambda, respectively, and the dimensions
m and n are given as m and n. You are to put the value of x̂ in xhat.

Which of the following Julia snippets will carry this out correctly? Circle the correct response for
each code snippet below. You do not need to justify your responses. (You are welcome to try to
run the snippets in Julia, but you should make your guesses before doing this.)

(a) xhat = [A sqrt(lambda)*eye(n)]\b Works. Doesn’t work.

(b) xhat = [A sqrt(lambda)*eye(n)]\[b; zeros(m)] Works. Doesn’t work.

(c) xhat = inv(A’*A+lambda*eye(n))*(A’*b) Works. Doesn’t work.

(d) xhat = [A; sqrt(lambda)*eye(n)]\b Works. Doesn’t work.
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(e) xhat = [A; sqrt(lambda)*eye(n)]\[b; zeros(n)] Works. Doesn’t work.

15.5 Fitting models to two different but similar populations. We wish to fit two different models to data
from two different but similar populations, for example males and females. The models are given
by ŷ = xTβ for the first group and ŷ = xT β̃ for the second group, where x is the n-vector of
features, ŷ is the prediction, β is the n-vector of model parameters for the first group and β̃ is the
n-vector of model parameters for the second group. (We can include an offset in the two models
by including a feature that is always one.)

Our training data consists of x(1), . . . , x(N) and y(1), . . . , y(N) from the first population, and x̃(1), . . . , x̃(N)

and ỹ(1), . . . , ỹ(N) from the second group. (For simplicity we assume that we have an equal number
of training data points in the two groups.)

Our main goal in choosing the parameter n-vectors β and β̃ is that the sum of squares of the
prediction errors for the first group (using the first model) and the sum of squares of the prediction
errors for the second group (using the second model) is small. Our secondary objective is that the
two parameter vectors β and β̃ are not too different. (This desire is based on our idea that the two
groups are similar, so the associated models should not be too different.)

Capture the goals expressed above as a bi-objective least squares problem with variable θ = (β, β̃).
Identify the primary objective J1 = ∥A1θ − b1∥2 and the secondary objective J2 = ∥A2θ − b2∥2.
Give A1, A2, b1 and b2 explicitly. Your solution can involve the n × N data matrices X and X̃,
whose columns are x(i) and x̃(i), respectively, and the two N -vectors yd and ỹd, whose entries are
y(i) and ỹ(i), respectively.

15.6 Approximate solution of linear equations with multiple righthand sides. Suppose A is a square
invertible matrix. We seek x for which Ax ≈ bi, i = 1, . . . , k. In other words, we wish to find a
value of x that approximately solves the systems of equations Ax = b1, . . . , Ax = bk. Two colleagues
offer suggestions about how to accomplish this.

• Your colleague Bob proposes a multi-objective least squares approach: choose x to minimize

∥Ax− b1∥2 + · · ·+ ∥Ax− bk∥2.

• Alice, another colleague, proposes the following method: first average the righthand sides to
get b = (1/k)(b1 + · · · + bk), and then choose x by solving one system of linear equations
Ax = b.

Oscar, a third colleague, says that the two approaches sound different but always end up with the
same choice of x. Is Oscar right? Justify your answer, i.e., either explain why the two approaches
always give the same x, or give a specific counter-example where they do not.

15.7 Suppose that x̂ minimizes ∥Ax− b∥2 + λ∥x− c∥2, where λ > 0. Here the matrix A and the vectors
b and c are given, and have dimensions for which the expression above makes sense. Which of the
following are true?

(a) ∥Ax̂− b∥ ≤ ∥Ac− b∥.
(b) If x̃ minimizes ∥Ax− b∥2 + λ̃∥x− c∥2, where λ̃ > λ, then ∥x̃− c∥ ≤ ∥x̂− c∥.
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15.8 Regression models are fit on a training data set using regularized least squares, with five different
values of λ, which scales the regularization. The RMS error on the training and test sets are shown
below. Which value of λ would you choose?

λ Train RMS error Test RMS error

0.1 0.6 2.5
0.3 0.7 2.1
1.0 0.9 1.8
3.0 1.1 1.4

10.0 1.5 1.9

15.9 Least squares smoothing. You are given a time series represented by the N -vector y. We seek ŷ,
an approximation of y that is also smooth. (We say that ŷ is obtained from y by smoothing; in
Electrical Engineering dialect, you would say that ŷ is the result of processing y through a low-pass
filter.) We do this by choosing ŷ to minimize

∥ŷ − y∥2 + λ∥Dŷ∥2,

where D is the (N − 1)×N first difference matrix, with Dij = 1 for j = i+ 1, Dij = −1 for j = i,
and Dij = 0 for all other i and j, and λ > 0 is a parameter that trades off how close ŷ is to y, and
how smooth it is.

Give a formula for ŷ in terms of y, D, and λ. Your formula should use standard matrices like 0 or
I, and operations like multiplication, inverse, or transpose. We will give partial credit for a solution
that uses matrix and vector stacking or slicing; the solution we are looking for is a simple formula
that does not use stacking or slicing.

If your formula involves an inverse, be sure to explain why the matrix being inverted is invertible.

15.10 Regularization in least squares classification. Consider a least squares classifier with regularization,
with regularization parameter λ. We fit the classifier on a training data set, and validate it on a test
data set. For each of these two data sets, we evaluate two different metrics: The RMS error, i.e.,
the RMS error of f̃(x) − y, and the error rate, which is the fraction of points for which f̂(x) ̸= y.
Note that f̃(x) is the real-valued approximation of y, and f̂(x) = sign(f̃(x)) is our Boolean-valued
prediction.

Suppose we increase λ. Which of the following statements is always true? You do not need to give
any justification.

(a) The training RMS error will stay the same or increase.

(b) The test RMS error will stay the same or increase.

(c) The training error rate will stay the same or increase.

(d) The test error rate will stay the same or increase.

15.11 Matrix pricing of bonds. A bond is a financial instrument that entitles the holder to a (nonnegative)
cash flow over some limited period of time, up to its maturity date. We consider N bonds, with
cash flows given by the T -vectors c1, . . . , cN . (We assume that the bonds all have maturity dates
that are less than or equal to T . We have (ci)t = 0 if the maturity date of bond i occurs before
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period t.) We assume there is no uncertainty in the cash flows. This is a reasonable assumption
for government issued bonds.

A typical bond cash flow is a periodic payment (called the coupon payment) until its maturity,
when the payment is the coupon plus the principal value of the bond. But there are other different
cash flows for bonds, such as a no-coupon bond with no coupon payments and one payment at
maturity, and these details won’t matter for this problem.

The price pi of bond i is modeled as given by its discounted present value, i.e., pi ≈ P T ci, where
the T -vector P is the discount vector. The number Pt gives the present value of $1 in period t. (A
better symbol for P might be d, but P is the traditional symbol.) A simple and näıve model for a
discount curve is a simple per-period interest rate r, for which Pt = (1 + r)−t, t = 1, . . . , T . More
sophisticated models of the discount curve allow it to have any value, which roughly speaking means
that the interest rate can change depending on the term, i.e., how far in future you’re looking. This
sometimes referred to as the term structure of interest rates.

We cannot directly observe the discount curve P , but we can observe the market prices of the
bonds, i.e., p1, . . . , pM . A critical task is to estimate or guess the discount curve, based on these
known market prices. (Once we guess the discount curve, we can use it to predict the price of
another bond we haven’t enountered before, from its cash flow.)

Matrix pricing is a standard method that is used to do this. It estimates the discount curve as the
minimizer of

M∑
i=1

(pi − P T ci)
2 + λ∥DP∥2,

where D is the (T − 1) × T first difference matrix, and λ is a positive parameter than trades off
fitting the observed bond market prices with the smoothness of the discount curve. It is called
matrix pricing because, well, there is a matrix involved.

(a) Give a formula for the estimated discount curve P̂ using matrix and vector notation. Your
formula can include λ, the bond cash flow vectors ci, the bond market price vector p, and
any matrices or vectors that you construct from these. You can use any standard matrix
operations, such as addition, multiplication, inverse, pseudo-inverse. You can assume that a
matrix occuring in your formula has linearly independent columns.

(b) Suggest a reasonable way to choose the parameter λ. Hint. Hold out some bonds as a test
set. You can describe your approach in English.

Remarks.

• People in finance usually work with the yield curve Y , and not the discount curve P . They

are related as Yt = P
−1/t
t − 1, and Pt = (1 + Yt)

−t. The yield Yt is the constant interest rate
over periods 1, . . . , t that would yield the discount Pt in period t.

• The method above is not exactly how yield curves are fit, but it is very similar in spirit.

15.12 The figure shows an illumination system of n lamps illuminating m flat patches. The variables in
the problem are the lamp powers x1, . . . , xn, which can vary between 0 and 1.
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lamp j

rij
θij

patch i

The illumination intensity at (the midpoint of) patch i is denoted Ii. We use a simple linear model
for the illumination intensities Ii as a function of the lamp powers xj : for i = 1, . . . ,m,

Ii =

n∑
j=1

Aijxj .

The matrix A (with coefficients Aij) is available in the data file illum_data.jl and was constructed
as follows. We take

Aij = r−2
ij max{cos θij , 0},

where rij denotes the distance between lamp j and the midpoint of patch i, and θij denotes the
angle between the upward normal of patch i and the vector from the midpoint of patch i to lamp j,
as shown in the figure. This model takes into account “self-shading” (i.e., the fact that a patch is
illuminated only by lamps in the halfspace it faces) but not shading of one patch caused by another.
Of course we could use a more complex illumination model, including shading and even reflections.
This just changes the matrix relating the lamp powers to the patch illumination levels.

The problem is to determine lamp powers that make the illumination levels Ii close to a given
desired level Ides. In other words, we want to choose the n-vector x such that

n∑
j=1

Aijxj ≈ Ides, i = 1, . . . ,m,

but we also have to observe the power limits 0 ≤ xj ≤ 1. This is an example of a constrained
optimization problem. The objective is to achieve an illumination level that is as uniform as possible;
the constraint is that the elements of x must satisfy 0 ≤ xj ≤ 1. Finding the exact solution of
this minimization problem requires specialized numerical techniques for constrained optimization.
However, we can solve it approximately using least squares.

In this problem we consider two approximate methods that are based on least squares, and compare
them for the data generated using include("illumdata.jl"). This creates an 11 × 7 matrix A
and scalar Ides = 2.

(a) Saturate the least squares solution. The first method is simply to ignore the bounds on the
lamp powers. We solve the least squares problem

minimize

m∑
i=1

(

n∑
j=1

Aijxj − Ides)
2
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ignoring the constraints 0 ≤ xj ≤ 1. If we are lucky, the solution will satisfy the bounds
0 ≤ xj ≤ 1, for j = 1, . . . , n. If not, we replace xj with zero if xj < 0 and with one if xj > 1.

Apply this method to the problem data generated by illumdata.jl, and calculate the result-
ing value of the cost function

∑m
i=1(Ii − Ides)

2.

(b) Weighted least squares. The second method is to solve the problem

minimize

m∑
i=1

(

n∑
j=1

Aijxj − Ides)
2 + λ

n∑
j=1

(xj − 0.5)2,

where the constant λ ≥ 0 is used to attach a cost to the deviation of the powers from the value
0.5, which lies in the middle of the power limits. For λ = 0, this is the same least squares
problem as in part (a). If we take λ large enough, the solution of this problem will satisfy
0 ≤ xj ≤ 1.

Formulate this problem as a least squares problem in the variables x, and solve it for λ = 1,
λ = 2, λ = 3, etc., until you find a value of λ such that all components of the solution x satisfy
0 ≤ xj ≤ 1. For that solution x, calculate the cost function

∑m
i=1(Ii − Ides)

2 and compare
with the value you obtained in part (a).
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16 Constrained least squares

16.1 Computing least-norm solutions. Generate a random 10 × 100 matrix A and a 10-vector b. Use
Julia to compute the least norm solution for Ax = b using the methods listed below, and verify
that the solutions found are the same (or more accurately, very close to each other). Be sure to
submit your code, including the code that checks if the solutions are close to each other.

• Using the formula x̂ = AT (AAT )−1b.

• Using the pseudo inverse: x̂ = A†b.

• Using the Julia backslash operator.

• Using the Julia package LinearLeastSquares.

16.2 Julia timing test for least-norm. Determine how long it takes for your computer to solve a least-
norm problem with m = 600 equations and n = 4000 variables. (You can use the backslash
operator.) What approximate flop rate does your result suggest?

Remark. Julia compiles just in time, so you should run the code a few times to get the correct
time.

16.3 Constrained least squares in Julia. You are asked to write some Julia code to compute the x̂ that
minimizes ∥Ax − b∥2 subject to Cx = d, where A is an m × n matrix, b is an m-vector, C is a
p × n matrix, and d is a p-vector. These are given as the Julia quantities A, b, C, and d, and the
dimensions m, n, and p are given as m, n, and p. You are to put the value of x̂ in xhat. (You can
assume that the associated KKT matrix is invertible.)

Write two lines of Julia code below that carries this out. Your code should be simple and clear.
You do not need to justify your answer.

Hint. Recall that the optimality conditions for this constrained least squares problem are

2ATAx+ CT z = 2AT b, Cx = d,

where z is the vector of Lagrange multipliers.

16.4 Varying the righthand sides in linearly constrained least squares. Suppose x̂ minimizes ∥Ax − b∥2
subject to Cx = d. (You can assume that the associated KKT matrix is invertible.) We can think
of x̂ as a function of b and d (which are called the righthand sides of the linearly constrained least
squares problem). A colleague asserts that x̂ is a linear function of b and d, and so has the form
x̂ = Fb+Gd for some appropriate matrices F and G.

Is she right? If not, give a counter-example. If so, justify your answer and explain how to find the
matrices F and G.

16.5 Smallest fund holdings consistent with portfolio return history. A fund consists of a portfolio with
n assets, characterized by the weight n-vector w, which satisfies 1Tw = 1. (Negative entries
correspond to short positions.) The fund manager publishes the return of the portfolio on T days,
given by r = Rw, where R is the T ×n matrix of asset returns, but does not divulge her holdings w.
(We do, however, know R.) We consider the case where T is smaller than n, i.e., we are given fewer
portfolio returns than there are assets. We will guess w by finding ŵ, the smallest weight vector
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(measured by norm squared) that is consistent with the reported portfolio returns (and satisfies
1Tw = 1).

Give a formula for ŵ (in terms of R, r, and the dimensions n and T ). Your formula can involve
the usual matrix and vector operations, including matrix addition, transpose, multiplication, in-
verse, pseudo-inverse, and so on. (If you use inverse or pseudo-inverse, you can assume that the
appropriate condition, such as linear independence of columns or rows, holds.)

16.6 Minimum jerk trajectory. The N -vector p denotes a time series of positions of an object such as a
vehicle. (For simplicity, we consider here the case when it moves in one dimension.) The velocity
v, acceleration a, and jerk (third derivative) j are defined as

v = DNp, a = DN−1v, j = DN−2a,

where Dk denotes the (k − 1) × k first difference matrix. (These are N − 1, N − 2, and N − 3
vectors, respectively.)

(a) Express j in the form j = Fp, where F is a Toeplitz matrix. Give the dimensions of F , and
explain what its first row is. Give F explicitly for the case N = 6; you can guess the general
form from that.

(b) Suppose we require

p1 = pinit, pN = pterm, v1 = vinit, vN = vterm,

where pinit, pterm, vinit, and vterm are given initial position and velocity and terminal position
and velocity. In addition to satisfying these constraints, we wish to minimize the sum square
jerk, ∥j∥2.
Express this as a linearly constrained least squares problem with variable p, i.e., minimize
∥Ap − b∥2 subject to Cp = d. Say what A, b, C, and d are, and give their dimensions. You
can refer to the matrix F found in part (a), and also the given initial and terminal positions
and velocities.

We are only asking you to set the problem up as a linearly constrained least squares problem.
We are not asking you to solve it.

16.7 De-biasing via linearly constrained least squares. Prediction models are fit to historical data. When
the historical data contains biases, these biases are captured in the model. If the model is then
used to make future decisions, it can help to perpetuate the biases. As a specific example consider
the problem of predicting interviewer ratings from attributes of a candidate that are culled from
their resume. The model is fit using historical data, where due to conscious and unconscious bias,
interviewers have given lower ratings to women on average. If the prediction model captures these
biases, and is then used to screen applicants (which is a typical use), it will help perpepuate biases.

There is a whole field devoted to various aspects of this problem, such as detecting bias in data
and models, and fitting data in ways that reduce the problem of perpetuating bias. In this exercise
we examine a simple method based on ideas from the course.

We consider the specific case mentioned above. The historical (training) data consists of pairs
(x(i), y(i)), i = 1, . . . , N , where x(i) is an n-vector of features culled from a candidate’s resume, and
y(i) is the numerical rating given by the interviewer. We assume that the first N f of the candidates
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are female and the remaining Nm candidates are male. (We have N f +Nm = N , and we assume
N f and Nm are both positive.) We will fit a regression model to this data, i.e., ŷ = xTβ+ v, where
the n-vector β and number v are the model parameters. We choose β and v by minimizing the sum
square prediction error on the training data,

N∑
i=1

(ŷ(i) − y(i))2,

where ŷ(i) = (x(i))Tβ + v. We also impose an anti-bias constraint, which is that the average
predicted score for the female and male candidates on the training set are equal, i.e.,

1

N f

N f∑
i=1

ŷ(i) =
1

Nm

N∑
i=N f+1

ŷ(i).

Explain how to formulate this as a linearly constrained least squares problem with variable (β, v)
of the form

minimize ∥A(β, v)− b∥2
subject to C(β, v) = d.

Give A, b, C, and d, making sure to specify their dimensions and entries. You can use X, the n×N
matrix of features, with columns x(i), and the N -vector yd, with entries y(i). You are welcome to
slice X and y into the female and male portions, e.g., Xf = X1:n,1:N f or ym = yd

N f+1:N
.
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17 Constrained least squares applications

17.1 Portfolio optimization. In this problem you will optimize a set of holdings to minimize risk for
various average returns. Download the files portfolio_data.jl and asset_prices.csv and place
them both in your working directory. Include portfolio_data.jl in your code, it defines the
return matrices R_train of dimension T_train by n and R_test of dimension T_test by n (where
n is the number of assets and T_train, T_test are number of days), and the asset_names array.
(The train data covers the time period 2005-2013, the test data 2013-2015.) Using R_train find
asset allocation weights for the portfolios that minimize risk for annualized returns of 10% and
20%. (To obtain annualized return multiply the daily return by P = 250 trading days.)

Plot the cumulative value for each portfolio over time, starting from the conventional initial
investment of $10000, for both the train and test sets of returns. To compute the product
104(1 + rT1 w)(1 + rT2 w) · · · (1 + rTTw) you can use 1e4*cumprod(1+returns*w) where returns is a
returns matrix and w an allocation vector.

For each of the 2 portfolios report

• the annualized return on the training and test sets;

• the annualized risk on the training and test sets;

• the asset with the minimum allocation weight (can be the most negative), and its weight;

• the asset with the maximum allocation weight, and its weight;

• the leverage, defined as |w1|+ · · ·+ |wn|. (Several other definitions of leverage are used.) This
number is always at least one, and it is exactly one only if the portfolio has no short positions.
You can use sum(abs(w)), where w is your allocation vector.

Comment briefly.

17.2 Rendezvous. The dynamics of two vehicles, at sampling times t = 1, 2, . . ., are given by

xt+1 = Axt +But, zt+1 = Azt +Bvt

where the n-vectors xt and zt are the states of vehicles 1 and 2, and the m-vectors ut and vt are
the inputs of vehicles 1 and 2. The n× n matrix A and the n×m matrix B are known.

The position of vehicle 1 at time t is given by Cxt, where C is a known 2 × n matrix. Similarly,
the position of vehicle 2 at time t is given by Czt.

The initial states of the two vehicles are fixed and given:

x1 = xstart, z1 = zstart.

We are interested in finding a sequence of inputs for the two vehicles over the time interval t =
1, . . . , T − 1 so that they rendezvous at time t = T , i.e., xT = zT . You can select the inputs to the
two vehicles,

u1, u2, . . . , uT−1, v1, v2, . . . , vT−1.

Among choices of the sequences u1, . . . , uT−1 and v1, . . . , vT−1 that satisfy the rendezvous condition,
we want the one that minimizes the weighted sum of squares of the two vehicle inputs,

J =
T−1∑
t=1

∥ut∥2 + λ
T−1∑
t=1

∥vt∥2,
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where λ > 0 is a parameter that trades off the two objectives.

(a) Explain how to find the sequences u1, . . . , uT−1 and v1, . . . , vT−1 that minimize J while satis-
fying the rendezvous condition by solving a constrained least-squares problem.

(b) The problem dataA, B, C, xstart, and zstart are defined in rendezvous.jl. Use LinearLeastSquares
to find u1, . . . , uT−1 and v1, . . . , vT−1 for λ = 0.1, λ = 1, and λ = 10. Plot the vehicle trajec-
tories (i.e., their positions) for each λ using the plotting code in rendezvous.jl.

(c) Give a simple expression for xT in the limit where λ → ∞ and for zT in the limit where λ → 0.
Assume that for any w ∈ Rn there exist sequences u1, . . . , uT−1 and v1, . . . , vT−1 such that
the rendezvous constraints are satisfied with w = zT = xT .

17.3 A linear regulator for a linear dynamical system. We consider a linear dynamical system with
dynamics xt+1 = Axt + But, where the n-vector xt is the state at time t and the m-vector ut is
the input at time t. We assume that x = 0 represents the desired operating point; the goal is to
find an input sequence u1, . . . , uT−1 that results in xT = 0, given the initial state x1. Choosing an
input sequence that takes the state to the desired operating point at time T is called regulation.

(a) Find an explicit formula for the sequence of inputs that yields regulation, and minimizes
∥u1∥2+ · · ·+∥uT−1∥2, in terms of A, B, T , and x1. This control is called the minimum energy
regulator.

Hint. Your formula may involve the controllability matrix

C =
[
B AB · · · AT−2B

]
,

and the vector u = (uT−1, uT−2, . . . , u1) (which is the input sequence in reverse order). You
do not need to expand expressions involving C, such as CCT or C†, in terms of A and B; you
are welcome to simply give your answers using C. You may assume that C is wide and has
independent rows.

(b) Show that ut (the tth input in the sequence found in part (a)) can be expressed as ut = Ktx1,
where Kt is an m× n matrix. Show how to find Kt from A and B. (But feel free to use the
matrix C in your answer.)

Hint. Your expression for Kt can include submatrices of C or C†.

(c) A constant linear regulator. A very common regulator strategy is to simply use ut = K1xt
for all t, t = 1, 2, 3, . . .. This is called a (constant) linear regulator, and K1 is called the
state feedback gain (since it maps the current state into the control input). Using this control
strategy can be interpreted as always carrying out the first step of minimum energy control,
as if we were going to steer the state to zero T steps in the future. This choice of input does
not yield regulation in T steps, but it typically achieves asymptotic regulation, which means
that xt → 0 as t → ∞.

Find the state feedback gain K1 for the specific system with

A =

 1.003 0 −0.008
0.005 .997 0
0 0.005 1.002

 , B =

 1 0
4 5
6 2

 ,

using T = 10. You may find the code in regulation.jl useful.
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(d) Simulate the system given in part (c) from several choices of initial state x1, under two
conditions: open-loop, which means ut = 0, and closed-loop, which means ut = K1xt, where
K1 is the state feedback gain found in part (c). Use regulation.jl to plot x.

17.4 Index tracking via least squares. An index is a real or hypothetical portfolio, such as the S&P 500,
Dow Jones Industrial Average, or the NASDAQ composite. Here we focus on a generic index, with
returns over T trading days given by the T -vector r, with rt the index return on day t. In index
tracking, we create a portfolio of n assets whose return is close to (or tracks) the index return.
We consider a fixed portfolio of n assets, given by weight n-vector w, with 1Tw = 1. (The weight
vector can have negative entries, corresponding to short positions.) The returns of the n assets
over the T trading days is given by the T ×n return matrix R, with Rtj being the return of asset j
in trading day t. The return of the portfolio is the T -vector Rw. We will assume that the columns
of R are linearly independent (which implies that T ≥ n).

In least squares index tracking, we pick w to minimize the RMS deviation between the index return
r and the portfolio return Rw, subject to 1Tw = 1.

Give a formula for the optimal portfolio weight vector ŵ. Your formula can involve R, r, block
matrices and vectors, slicing, inverses, transpose, and other standard matrix operations. If your
method involves an inverse (or multiple inverses), explain why the matrix (or matrices) being
inverted is (are) invertible.

Remark. This exercise differs a bit from the way index tracking is really done in practice. In
practical index tracking it is common to change the portfolio weights every day, but here we consider
the case when the portfolio weights are fixed. In addition the least squares problem typically uses
weights that emphasize recent returns over returns from the past, such as exponentially decaying
weights. (You don’t need to know any of this to solve this problem.)
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18 Nonlinear least squares

18.1 Airplane steady flight. Consider an airplane flying at constant speed S, along a straight line with
flight path angle γ (in radians, with respect to horizontal; γ > 0 means climbing). The other
relevant quantities are α, the angle of attack, which is the angle between the airplane body and the
airplane flight path, the four forces lift L, drag D, engine thrust T , and airplane weight W . These
are related by the steady flight equations,

T = Wγ +D, L = W

which state that the horizontal and vertical forces on the airplane balance, i.e., sum to zero. The
lift and drag forces depend on the angle of attack and speed,

L = aLCL(α)S
2, D = aDCD(α)S

2,

where aL and aD are known constants, CL is the coefficient of lift function, and CD is the coefficient
of drag function. These are well approximated as affine functions,

CL(α) = C
(0)
L + αC

(1)
L , CD(α) = C

(0)
D + αC

(1)
D ,

where the four constants C
(0)
L , C

(1)
L , C

(0)
D , C

(1)
D are known. The airplane weight W is known and

constant; we can control the engine thrust T and the angle of attack α (via the airplane control
surfaces).

(a) Given a desired speed Sdes and a desired flight path angle γdes, how would you determine the
thrust T and angle of attack α. Explain how this can be done analytically. (You do not have
to give formulas for T and α.)

(b) Glide path. Suppose that T = 0, i.e., the engines are off. the flight path angle γ and the speed
S.

(c) Now suppose that we fix T and α. Use the Levenberg-Marquardt algorithm to compute the
resulting speed S and flight path angle γ.

18.2 Lambert W -function. The Lambert W -function, denoted W : [0,∞) → R, is defined as z = W (u),
where z is the unique number z ≥ 0 for which zez = u. (The notation just means that we restrict
the argument z to be nonnegative.) The Lambert function arises in a variety of applications.
There is no analytical formula for W (u); it must be computed numerically. In this exercise you will
develop a solver to compute W (u), given a nonnegative number u, using the Levenberg-Marquardt
algorithm, by minimizing (zez − u)2 over z.

(a) Suppose the current iterate is z(k) (which you can assume to be nonnegative). Give a formula
for z(k+1) in terms of z(k) and λ(k), the current value of the regularization parameter in the
Levenberg-Marquardt algorithm.

(b) Implement the Levenberg-Marquardt algorithm. You can start with z(1) = 1 and λ(1) = 1 (but

it should work with other initializations). You can stop the algorithm when
∣∣∣z(k)ez(k) − u

∣∣∣ is
small (say, less than 10−6). Test your algorithm by evaluating W (1), W (2), and W (3). Verify
that these numbers (almost) satisfy W (i)eW (i) = i, for i = 1, 2, 3. If you like, you can check
the values you compute against those computed using the LambertW Julia package.
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19 Constrained nonlinear least squares

19.1
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20 Miscellaneous

20.1 Appropriate response. For each of the situations (a), (b), and (c) described below, circle the most
appropriate response from among the five choices. You can circle only one for each situation.

(a) An intern working for you develops several different models to predict the daily demand for a
product. How should you choose which model is the best one, the one to put into production?

Laplacian Magic Regularization Validation k-means

(b) As an intern you develop an auto-regressive model to predict tomorrow’s sales volume. It
works very well, making predictions that are typically within 5% of the actual sales volume.
Your boss, who has an MBA and is not particularly interested in mathematical details, asks
how your predictor works. How do you respond?

Laplacian Magic Regularization Validation k-means

(c) A colleague needs a quantitative measure of how rough an image is, i.e., how much adjacent
pixel values differ. What do you suggest?

Laplacian Magic Regularization Validation k-means
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