Vectors in Julia

Keegan Go David Zeng Stephen Boyd

EE103
Stanford University

September 24, 2015
Vectors in Julia

main topics:

- how to create and manipulate vectors in Julia
- how Julia notation differs from math notation
 Scalars

- represented by two types, Int64 and Float64

 \[a = 1 \]
 \[b = 0.5 \]

- usually the types work together correctly, for example

 \[1 + 0.5 \]

 produces a float
Vectors

- Vectors are represented by arrays in Julia.
- To create the 3-vector:

\[
x = (8, -4, 3.5) = \begin{bmatrix} 8 \\ -4 \\ 3.5 \end{bmatrix}
\]

Use:

\[
x = \begin{bmatrix} 8 \\ -4 \\ 3.5 \end{bmatrix} (x = [8; -4; 3.5] also works)
\]

- Watch out for similar looking expressions:
 - \((8, -4, 3.5)\) and \(\{8, -4, 3.5\}\) mean something else
 - \([8, -4, 3.5]\) is a row vector (later)

- Length of an array: \texttt{length(x)}
INDEXING AND SLICING

- Indexes run from 1 to n: \(x_2 \) is \(x[2] \)
- Can also set an element, e.g., \(x[3] = 10.5 \)
- Use a range to select more than one element
- \(x[2:3] \) selects the second and third elements
- To select every other element use \(x[1:2:end] \)
Block vectors

- to form a stacked vector like

\[a = (b, c) = \begin{bmatrix} b \\ c \end{bmatrix} \]

(with \(b \) and \(c \) vectors)

\[a = [b, c] \]

(a = [b; c] also works)

- can mix vectors and scalars:

\[a = [b, 2, c, -6] \]
Basic functions for arrays

- sum of (the entries of) a vector: \texttt{sum(x)}
- mean of the entries (\texttt{avg(x)}): \texttt{mean(x)}
- \(0_n\) is \texttt{zeros(n)}
- \(1_n\) is \texttt{ones(n)}
Creating unit vectors

- form e_3 with length 10
- create a zero vector of size 10 then set the third element to 1

  ```matlab
e_3 = zeros(10); e_3[3] = 1;
```
an array's type is the most specific given its elements
consider \(\text{arr1} = [100, 7, -83] \) and \(\text{arr2} = [4.5, -10, 13] \)
\(\text{arr1} \) is an \text{Int} array while \(\text{arr2} \) is a \text{Float} array
\(\text{arr1}[2] = 0.1 \) will error because \(\text{arr1} \) can only store \text{Ints}
to make \(\text{arr1} \) a \text{Float} array, give one entry a decimal point
\(\text{arr1} = [100., 7, -83] \)
List of vectors

- to form a list with vectors a, b, and c:
 \[
 \text{vector_list} = \{a, b, c\}
 \]
- the second vector in this list is \text{vector_list}[2]
- to access an element in a vector: \text{vector_list}[2][3]
do not mix mathematical notation with Julia notation

notations are not compatible, for example
\[\mathbf{v} = (0, 1, 1) \]
produces a tuple, not an array (vector)

similarly,
\[\mathbf{v} = [1, 10, 7] \]
defines an array (vector) in Julia, but isn’t mathematically correct
Vector addition and subtraction

- vector addition uses $+$, for example

\[
\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix} + \begin{bmatrix}
4 \\
5 \\
6
\end{bmatrix}
\]

is written

$[1, 2, 3] + [4, 5, 6]$

- subtraction uses $-$

- the arrays must have the same length (unless one is scalar)
Scalar-vector addition

- in Julia, a scalar and a vector can be added
- the scalar is added to each entry of the vector

\([2, 4, 8] + 3\)

gives (in mathematical notation)

\[
\begin{bmatrix}
2 \\
4 \\
8
\end{bmatrix} + 31 = \begin{bmatrix}
5 \\
7 \\
11
\end{bmatrix}
\]
scalar-vector multiplication uses *
for example,

\[
(-2) \begin{bmatrix} 1 \\ 9 \\ 6 \end{bmatrix}
\]
is written

\[-2 \times [1, 9, 6]\]

the other order gives the same result:

\[[1, 9, 6] \times -2\]
Inner product

- Inner product $a^T b$ is written as $\text{dot}(a,b)$
 - which returns a scalar (Int or Float)
- a and b must have the same length
Norm and distance

- The norm $\|x\| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$ is written \texttt{norm(x)}
- $\texttt{dist}(x, y) = \|x - y\|$ is written \texttt{norm(x-y)}
RMS value

- \(\text{rms}(x) \) is defined as

\[
\text{rms}(x) = \sqrt{\frac{1}{n} (x_1^2 + \cdots + x_n^2)} = \frac{\|x\|}{\sqrt{n}}.
\]

- can be expressed as

\[
\text{rms}_x = \text{norm}(x) / \sqrt{\text{length}(x)}
\]
Standard deviation

- Standard deviation is defined as

\[
\text{std}(x) = \frac{\|x - \text{avg}(x)\|}{\sqrt{n}}
\]

- Which can be expressed as

\[
\text{std}_\text{of}_x = \frac{\text{norm}(x - \text{mean}(x))}{\sqrt{\text{length}(x)}}
\]

- Warning: the Julia function `std` uses the slightly different definition

\[
\text{std}(x) = \frac{\|x - \text{avg}(x)\|}{\sqrt{n - 1}}
\]
Angle

- the angle between two vectors a and b is

$$\angle(a, b) = \arccos\left(\frac{a^T b}{\|a\| \|b\|}\right)$$

- can be expressed as

$$\text{angle}_a_b = \cos(\text{dot}(a, b)/(\text{norm}(a)\times\text{norm}(b)))$$
Nearest neighbor example

Compares vectors in vector_list against a_vector
and returns the index of the one which is closest
function nearest_neighbor(vector_list, a_vector)
 closest_distance = Inf
 closest_index = 0
 for i in 1:length(vector_list)
 ith_distance = norm(vector_list[i] - a_vector)
 if (ith_distance < closest_distance)
 closest_distance = ith_distance
 closest_index = i
 end
 end
 return closest_index
end