Matrices in Julia

Reese Pathak David Zeng Keegan Go Stephen Boyd

EE103
Stanford University

October 16, 2016
Matrices

- Matrices in Julia are represented by 2D arrays
- \([2 \ -4 \ 8.2; \ -5.5 \ 3.5 \ 63]\) creates the \(2 \times 3\) matrix

\[
A = \begin{bmatrix}
2 & -4 & 8.2 \\
-5.5 & 3.5 & 63
\end{bmatrix}
\]

- Spaces separate entries in a row; semicolons separate individual rows
- `size(A)` returns the size of \(A\) as a pair, \(i.e.,\)

\[
A_{\text{rows}}, A_{\text{cols}} = \text{size}(A) \quad \# \text{ or}
\]

\[
A_{\text{rows}} \text{ is size}(A)[1], A_{\text{cols}} \text{ is size}(A)[2]
\]

- Row vectors are \(1 \times n\) matrices, \(e.g.,\) \([4 \ 8.7 \ -9]\)
Indexing and slicing

- A_{ij} is found with $A[i,j]$
- can use ranges: $A[1:2,1:3]$ is 2×3 submatrix or slice $A_{1:2,1:3}$
- $:$ selects all elements along that dimension
 - $A[:,3]$ is third column
 - $A[2,:]$ is second row
- $A[:,]$ stacks the columns of A as a vector (column-major order)
- $A'[:,]$ stacks the rows of A as a vector (row-major order)
Block matrices

- block matrix

\[X = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \]

(with A, B, C, and D matrices) is formed with

\[X = [A \ B; \ C \ D] \]

- usual rules governing dimensions of A, B, C, and D apply
Useful matrices in Julia

- $0_{m \times n}$ is `zeros(m,n)`
- $m \times n$ matrix with all entries 1 is `ones(m,n)`
- $I_{n \times n}$ is `eye(n)`
- `diag(x)` is `diagm(x)` (where x is a vector)
Transpose and matrix addition

- A^T is written A' (single quote mark)
- +/- are used for matrix addition/substraction (matrices must have the same size)
- for example,

$$\begin{bmatrix} 4.0 & 7 \\ -10.6 & 89.8 \end{bmatrix} + \begin{bmatrix} 19 & -34.7 \\ 20 & 1 \end{bmatrix}$$

is written

$[4.0 \ 7; \ -10.6 \ 89.8] + [19 \ -34.7; \ 20 \ 1]$
Matrix-scalar operations

▶ matrix-scalar operations (+, −, *, \) apply elementwise
▶ scalar-matrix multiplication:

\[10 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \]
gives

\[10 \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 10 \\ 30 \end{bmatrix} \]

(scalar can also appear on right of matrix)

▶ matrix-scalar addition:

\[\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + 10 \]
gives

\[\begin{bmatrix} 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 10 \\ 10 \end{bmatrix} = \begin{bmatrix} 11 \\ 13 \end{bmatrix} \]

(which is not standard mathematical notation)
Matrix-vector multiplication

- * operator is used for matrix-vector multiplication
- for example,

\[
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\begin{bmatrix}
5 \\
6
\end{bmatrix}
\]

is written

\([1 \ 2; \ 3 \ 4] \ast [5, \ 6]\)
Matrix multiplication

* is also used for matrix-matrix multiplication:

\[
\begin{bmatrix}
2 & 4 & 3 \\
3 & 1 & 5
\end{bmatrix}
\begin{bmatrix}
3 & 10 \\
4 & 2 \\
1 & 7
\end{bmatrix}
\]

is written

\[
\begin{bmatrix}
2 & 4 & 3 \\
3 & 1 & 5
\end{bmatrix}
\begin{bmatrix}
3 & 10 \\
4 & 2 \\
1 & 7
\end{bmatrix}
\]

\(A^k\) is \(A^k\) (for square matrix \(A\))
Other functions

- sum of entries of a matrix: `sum(A)`
- average of entries of a matrix: `mean(A)`
- `max(A,B)` and `min(A,B)` finds the element-wise `max` and `min` respectively
 - the arguments must have the same size unless one is a scalar
- `norm(A)` is not what you might think
 - to find \(\left(\sum_{i,j} A_{ij}^2 \right)^{1/2} \) use `norm(A[:])` or `vecnorm(A)`
Computing regression model RMS error

the math:

- X is an $n \times N$ matrix whose N columns are feature n-vectors
- y is the N-vector of associated outcomes
- regression model is $\hat{y} = X^T \beta + v$ (β is n-vector, v is scalar)
- RMS error is $\text{rms}(\hat{y} - y)$

in Julia:

```julia
y_hat = X'*beta + v
rms_error = norm(y_hat-y)/sqrt(length(y))
```