Matrices in Julia

David Zeng Keegan Go Stephen Boyd

EE103
Stanford University

September 24, 2015
Matrices

- Matrices in Julia are represented by 2D arrays
- To create the 2×3 matrix A

$$A = \begin{bmatrix} 2 & -4 & 8.2 \\ -5.5 & 3.5 & 63 \end{bmatrix}$$

Use

$A = \begin{bmatrix} 2 & -4 & 8.2 \\ -5.5 & 3.5 & 63 \end{bmatrix}$

- Semicolons delimit rows; spaces delimit entries in a row
- `size(A)` returns the size of A as a pair, i.e.,

 `A_rows, A_cols = size(A) # or A_size = size(A)`

 # `A_rows` is `A_size[1]`, `A_cols` is `A_size[2]`

- Row vectors are $1 \times n$ matrices, e.g., $[4 \ 8.7 \ -9]$
Indexing and slicing

- A_{13} is found with $A[1,3]$
- ranges can also be used: $A[2,1:2:end]$
- : selects all elements along that dimension
 - $A[:,3]$ selects the third column
 - $A[2,:]$ selects the second row
 - $A[:,end:-1:1]$ reverses the order of columns

- $A[:]$ returns the columns of A stacked as a vector, i.e., if $A = [2 \ 7; \ 8 \ 1]$ then $A[:]$ returns $[2, 8, 7, 1]$
Block matrices

- the block matrix
 \[X = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \]
 (with \(A, B, C, \) and \(D \) matrices) is formed with
 \[X = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \]
- all matrices in a row must have the same height
- the total number of columns in each row be consistent
 (c.f. standard math notation, in which \(A \) and \(C \) must have the same number of columns)
Common matrices

- $0_{m \times n}$ is $\text{zeros}(m,n)$
- $m \times n$ matrix with all entries 1 is $\text{ones}(m,n)$
- $I_{n \times n}$ is $\text{eye}(n)$
- $\text{diag}(x)$ is $\text{diagm}(x)$ (where x is a vector)
- random $m \times n$ matrix with entries from standard normal distribution: $\text{randn}(m,n)$
- random $m \times n$ matrix with entries from uniform distribution on $[0, 1]$: $\text{rand}(m,n)$
Outline
Transpose and matrix addition

- A^T is written A' (single quote mark)
- $+/ -$ are overloaded for matrix addition/subtraction
- for example,

$$\begin{bmatrix}
4.0 & 7 \\
-10.6 & 89.8
\end{bmatrix} + \begin{bmatrix}
19 & -34.7 \\
20 & 1
\end{bmatrix}$$

is written

$$[4.0 \ 7; -10.6 \ 89.8] + [19 \ -34.7; \ 20 \ 1]$$

matrices must have the same size (unless one is a scalar)
Matrix-scalar operations

- all matrix-scalar operations (+,-,*) apply elementwise
- for example, matrix-scalar addition:
 \[
 \begin{bmatrix}
 1 & 2 \\
 3 & 4
 \end{bmatrix}
 + 10
 \]
gives
 \[
 \begin{bmatrix}
 1 & 2 \\
 3 & 4
 \end{bmatrix}
 + 10 \begin{bmatrix}
 1 & 1 \\
 1 & 1
 \end{bmatrix}
 =
 \begin{bmatrix}
 11 & 12 \\
 13 & 14
 \end{bmatrix}
 \]
- scalar-multiplication:
 \[
 \begin{bmatrix}
 1 & 2 \\
 3 & 4
 \end{bmatrix}
 * 10
 \]
gives
 \[
 10 \begin{bmatrix}
 1 & 2 \\
 3 & 4
 \end{bmatrix}
 =
 \begin{bmatrix}
 10 & 20 \\
 30 & 40
 \end{bmatrix}
 \]
Matrix-vector multiplication

- the * operator is used for matrix-vector multiplication
- for example,

\[
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\begin{bmatrix}
5 \\
6
\end{bmatrix}
\]

is written

\[
[1 \ 2; \ 3 \ 4] \ast [5, \ 6]
\]

- for vectors \(x \) and \(y \), \(x' \ast y \) finds their inner product
 - unlike \(\text{dot}(x, y) \), \(x' \ast y \) returns a \(1 \times 1 \) array, not a scalar
Matrix multiplication

- * is overloaded for matrix-matrix multiplication:

\[
\begin{bmatrix}
2 & 4 & 3 \\
3 & 1 & 5
\end{bmatrix}
\begin{bmatrix}
3 & 10 \\
4 & 2 \\
1 & 7
\end{bmatrix}
\]

is written
\[
[2 \ 4 \ 3; \ 3 \ 1 \ 5] \ast [3 \ 10; \ 4 \ 2; \ 1 \ 7]
\]

- \(A^k \) is \(A^k \) for square matrix \(A \) and nonnegative integer \(k \)
Other functions

- sum of entries of a matrix: \(\text{sum}(A) \)
- average of entries of a matrix: \(\text{mean}(A) \)
- \(\text{max}(A,B) \) and \(\text{min}(A,B) \) finds the element-wise \(\max \) and \(\min \) respectively
 - the arguments must have the same size unless one is a scalar
- \(\text{norm}(A) \) is not what you might think
 - to find \(\left(\sum_{i,j} A_{ij}^2 \right)^{1/2} \) use \(\text{norm}(A[:]) \) or \(\text{vecnorm}(A) \)
Computing regression model RMS error

the math:

- X is an $n \times N$ matrix whose N columns are feature n-vectors
- y is the N-vector of associated outcomes
- regression model is $\hat{y} = X^T \beta + v$ (β is n-vector, v is scalar)
- RMS error is $\text{rms}(\hat{y} - y)$

in Julia:

```julia
y_hat = X'*beta + v
rms_error = norm(y_hat-y)/sqrt(length(y))
```