Matrix inverses in Julia

- QR factorization
- inverse
- pseudo-inverse
- backslash operator
QR factorization

- the `qr` command finds the QR factorization of a matrix

 $A = \text{rand}(5, 3)$

 $Q, R = \text{qr}(A)$

- when columns of $n \times k$ matrix A are independent, `qr` is same as ours
- when columns are dependent, `qr` is not same as ours
 - $A = QR$, $Q^TQ = I$, and $R_{ij} = 0$ for $i > j$ always holds
 - R can have zero or negative diagonal entries
 - R is not square when A is wide
Checking linear independence with Julia’s QR

- let’s check if columns of A are linearly independent
- A must be tall or square
- columns are linearly independent if and only if R has no 0 diagonal entries
- check if columns of (tall or square) A are linearly independent:

 a1 = rand(5)
a2 = rand(5)
A = [a1 a2 a1+a2] # linearly dependent columns
Q, R = qr(A)
find the entry of diagonal of R closest to 0
R can have negative entries
min(abs(diag(R)))
The inverse matrix A^{-1} can be found using the `inv` function in Julia. To solve a square system of linear equations $Ax = b$, first ensure the matrix A is invertible and square.

```julia
b = rand(5,1)
A = rand(5,5)
x = inv(A)*b
norm(A*x-b) # check residual
```

However, there is a better way to solve this using backslash (`\`).
Pseudo-inverse

- for a $m \times n$ matrix A, $\text{pinv}(A)$ will return the $n \times m$ pseudo-inverse
- if A is square and invertible
 - $\text{pinv}(A)$ will return the inverse A^{-1}
- if A is tall with linearly independent columns
 - $\text{pinv}(A)$ will return the left inverse $(A^T A)^{-1} A^T$
- if A is wide with linearly independent rows
 - $\text{pinv}(A)$ will return the right inverse $A^T (A A^T)^{-1}$
- in other cases, $\text{pinv}(A)$ returns an $m \times n$ matrix, but
 - it is not a left or right inverse of A
 - what it is is is beyond the scope of this class
The backslash operator

- given A and b, the \ operator solves the linear system $Ax = b$ for x
- for a $m \times n$ matrix A and a m-vector b, $A\backslash b$ returns a n-vector x
- if A is square and invertible
 - $x = A^{-1}b$
 - the unique solution of $Ax = b$
- if A is tall with linearly independent columns
 - $x = (A^T A)^{-1} A^T b$
 - the least squares approximate solution of $Ax = b$
- if A is wide with linearly independent rows
 - $x = A^T (A A^T)^{-1} b$
 - x is the least norm solution of $Ax = b$
- in other cases, $A\backslash b$ will print an error message
- uses a factor and solve method similar to QR
Solving matrix systems with backslash

- solve matrix equation $AX = B$ for X, with A square
- with $X = [x_1 \cdots x_k]$, $B = [b_1 \cdots b_k]$, same as solving k linear systems
 $$Ax_1 = b_1, \ldots, Ax_k = b_k$$
- $X = A\backslash B$ solves the system, doing the right thing:
 - factor A once (order n^3)
 - back substitution to get $x_i = A^{-1}b_i$, $i = 1, \ldots, k$ (order kn^2)