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Regression model

I we assume there is an approximate relation between n-vector x and
scalar y: y ≈ f(x)

I x is called feature vector or regressor

I y is called outcome or dependent variable

I regression model is affine function of x given by

ŷ = f̂(x) = xTβ + v

where β ∈ Rn, v ∈ R are model parameters

I n-vector β is weight vector, scalar v is offset

I the regressors xi are typically shifted and scaled to be on
approximately the same scale
(say, with a mean of 0 and standard deviation of 1)
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Measurements/data

I we have N samples or examples

(x1, y1), . . . , (xN , yN )

I define n×N matrix X = [x1 · · ·xN ] and N -vector y = (y1, . . . , yN )

I define N -vector ŷ = (f̂(x1), . . . , f̂(xN )) (predicted outcomes)

I can express predictions as

ŷ = XTβ + v1

I prediction error N -vector (on data) is

ŷ − y = XTβ + v1− y
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Regression

I choose β, v to minimize sum square prediction error

∥∥XTβ + v1− y
∥∥2 =

∥∥∥∥[1 XT
] [ v

β

]
− y
∥∥∥∥2

I a least squares problem with variables β, v

I solution [
v̂

β̂

]
=
([

1 XT
]T [

1 XT
])−1 [

1 XT
]T
y
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Validation

I we want y ≈ f̂(x) on new, unseen data

I when this happens, we say model generalizes

I to check this, we reserve some of the data as a test set, leaving the
rest of the data as a training set

I we fit the model by regression on the training set

I we test the model on the test data set

I if the RMS prediction error on the test set is similar to the RMS
prediction on the training set, we have (some) confidence in the
regression model

I if the RMS test prediction error is much larger than the RMS
training error, the model is over-fit, and we don’t trust it

Regression model 6



Outline

Regression model

Example

Feature engineering

Example 7



Wine quality/rating

I 1599 red wines

I 11-feature-vector x

I outcome y is median of expert ratings (integer between 1 and 10)

I avg(y) = 5.6, std(y) = 0.8

I split data into training set (1279 samples) and test set (320 samples)
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Regressors

x1 fixed acidity
x2 volatile acidity
x3 citric acid
x4 residual sugar
x5 chlorides
x6 free sulfur dioxide
x7 total sulfur dioxide
x8 density
x9 pH
x10 sulphates
x11 alcohol

(regressors are shifted and scaled so mean ≈ 0, std. dev. ≈ 1)
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Results

model RMS train error RMS test error
constant 0.80 0.83
regression 0.65 0.64
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Results

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
3

4

5

6

7

8

Y
tr

a
in

 h
a

t

Ytrain

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
3

4

5

6

7

8

Y
te

s
t 

h
a

t

Ytest

Example 11



Regression model parameters

x1 fixed acidity 0.06
x2 volatile acidity -0.18
x3 citric acid -0.03
x4 residual sugar 0.02
x5 chlorides -0.07
x6 free sulfur dioxide 0.05
x7 total sulfur dioxide -0.09
x8 density -0.05
x9 pH -0.06
x10 sulphates 0.15
x11 alcohol 0.30
1 (constant) 5.62
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5-fold validation

I divide data (1599 samples) into 5 folds (each with ≈ 320 samples)

I for i = 1, . . . , 5 train on all folds except i

I then test regression model on fold i

I results:
test fold train RMS test RMS
1 0.65 0.64
2 0.64 0.68
3 0.65 0.62
4 0.64 0.66
5 0.64 0.66

I suggests regression model can predict quality on new wines with an
RMS error around 0.66 or so
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Modifying features

I idea: replace feature xi with some function of xi
I standarizing: replace xi with (xi − bi)/ai

– bi is (approximately) mean of xi across data set
– ai is (approximately) standard deviation of xi across data set

(modified features have mean near zero, standard deviation near one)
this is almost always done

I winsorizing: ‘trim’ values of xi outside some range: replace xi with 3 xi > 3
xi |xi| ≤ 3
−3 xi < −3

helps when there are some values that are ‘outliers’

Feature engineering 15



Modifying features

I log transform: replace xi with log xi (for xi > 0)

– good for features that vary over large range
– variation for xi ≥ 0: replace xi with log(xi + 1)

I Q: is transforming features a good idea?

I A: if RMS error on validation set is smaller
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Augmenting features

I idea: augment original features with new functions of them

I high/low values: augment feature xi with two new features

– xhi
i = max{xi − 1, 0}

– xlo
i = min{xi + 1, 0}

I interactions: add features of form xixj
I custom augmented features are common in applications

– last high/low price
– price/earnings ratio
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Example

I synthetic data set, with 1000 samples, 4 features

I divide into training set (800) and test set (200)

I first fit simple models, using zero or one regressor:

model train RMS test RMS
1 1.85 1.84
1, x1 1.76 1.74
1, x2 1.82 1.79
1, x3 1.46 1.47
1, x4 1.54 1.60
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ŷ versus y, constant model

(test set)

y

-6 -3 0 3 6

-6

-3

0

3

6

y
h
a
t

Feature engineering 19



ŷ versus y, single regressor models

(test set)
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Basic regression

(regression with all features)

model train RMS test RMS
1 1.85 1.84
x1 1.76 1.74
x2 1.82 1.79
x3 1.46 1.47
x4 1.54 1.60
1, x1, x2, x3, x4 0.88 0.92
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ŷ versus y, basic regression

train and test sets
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Augmenting features

I add new features max{xi − 1, 0}, min{xi + 1, 0}, i = 1, . . . , 4

I augmented model has 13 features total

model train RMS test RMS
1 1.85 1.84
1, x1 1.76 1.74
1, x2 1.82 1.79
1, x3 1.46 1.47
1, x4 1.54 1.60
1, x1, x2, x3, x4 0.88 0.92
augmented 0.46 0.48
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ŷ versus y, augmented regression

with augmented features on train and test sets
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Regression model with augmented features

I ŷ = β1 + (β2x1 + β6 max{x1 − 1, 0}+ β10 min{x1 + 1, 0}) + · · ·
I ŷ is a sum of piecewise linear functions of xi
I called a generalized additive model

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-0.2

0.0

0.2

0.4

0.6

0.8

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

Feature engineering 25


	Regression model
	Example
	Feature engineering

