Regression

Ahmed Bou-Rabee and Stephen Boyd

EE103 Stanford University

November 2, 2016

Outline

Regression model

Example

Feature engineering

Regression model

Regression model

- we assume there is an approximate relation between *n*-vector x and scalar y: $y \approx f(x)$
- ► x is called *feature vector* or *regressor*
- y is called outcome or dependent variable
- regression model is affine function of x given by

$$\hat{y} = \hat{f}(x) = x^T \beta + v$$

where $\beta \in \mathbf{R}^n, v \in \mathbf{R}$ are model parameters

- *n*-vector β is weight vector, scalar v is offset
- the regressors x_i are typically shifted and scaled to be on approximately the same scale (say, with a mean of 0 and standard deviation of 1)

Measurements/data

▶ we have *N* samples or examples

$$(x_1,y_1),\ldots,(x_N,y_N)$$

- define $n \times N$ matrix $X = [x_1 \cdots x_N]$ and N-vector $y = (y_1, \dots, y_N)$
- ▶ define N-vector $\hat{y} = (\hat{f}(x_1), \dots, \hat{f}(x_N))$ (predicted outcomes)

can express predictions as

$$\hat{y} = X^T \beta + v \mathbf{1}$$

prediction error N-vector (on data) is

$$\hat{y} - y = X^T \beta + v \mathbf{1} - y$$

Regression model

Regression

• choose β , v to minimize sum square prediction error

$$\left\|X^{T}\beta + v\mathbf{1} - y\right\|^{2} = \left\|\begin{bmatrix}\mathbf{1} \ X^{T}\end{bmatrix}\begin{bmatrix}v\\\beta\end{bmatrix} - y\right\|^{2}$$

 \blacktriangleright a least squares problem with variables $\beta,\,v$

solution

$$\begin{bmatrix} \hat{v} \\ \hat{\beta} \end{bmatrix} = \left(\begin{bmatrix} \mathbf{1} \ X^T \end{bmatrix}^T \begin{bmatrix} \mathbf{1} \ X^T \end{bmatrix} \right)^{-1} \begin{bmatrix} \mathbf{1} \ X^T \end{bmatrix}^T y$$

Regression model

Validation

- we want $y \approx \hat{f}(x)$ on *new*, *unseen data*
- when this happens, we say model generalizes
- to check this, we reserve some of the data as a *test set*, leaving the rest of the data as a *training set*
- we fit the model by regression on the training set
- we test the model on the test data set
- if the RMS prediction error on the test set is similar to the RMS prediction on the training set, we have (some) confidence in the regression model
- if the RMS test prediction error is much larger than the RMS training error, the model is *over-fit*, and we don't trust it

Outline

Regression model

Example

Feature engineering

Wine quality/rating

- ▶ 1599 red wines
- ▶ 11-feature-vector x
- outcome y is median of expert ratings (integer between 1 and 10)

•
$$avg(y) = 5.6$$
, $std(y) = 0.8$

▶ split data into training set (1279 samples) and test set (320 samples)

Regressors

fixed acidity x_1 volatile acidity x_2 citric acid x_3 residual sugar x_4 chlorides x_5 x_6 free sulfur dioxide total sulfur dioxide x_7 density x_8 pН x_9 sulphates x_{10} alcohol x_{11}

(regressors are shifted and scaled so mean pprox 0, std. dev. pprox 1)

Results

model	RMS train error	RMS test error
constant	0.80	0.83
regression	0.65	0.64

Results

Regression model parameters

x_1	fixed acidity	0.06
x_2	volatile acidity	-0.18
x_3	citric acid	-0.03
x_4	residual sugar	0.02
x_5	chlorides	-0.07
x_6	free sulfur dioxide	0.05
x_7	total sulfur dioxide	-0.09
x_8	density	-0.05
x_9	pН	-0.06
x_{10}	sulphates	0.15
x_{11}	alcohol	0.30
1	(constant)	5.62

5-fold validation

- divide data (1599 samples) into 5 *folds* (each with ≈ 320 samples)
- for $i = 1, \ldots, 5$ train on all folds except i
- \blacktriangleright then test regression model on fold i
- results:

test fold	train RMS	test RMS
1	0.65	0.64
2	0.64	0.68
3	0.65	0.62
4	0.64	0.66
5	0.64	0.66

 \blacktriangleright suggests regression model can predict quality on new wines with an RMS error around $0.66~{\rm or}$ so

Outline

Regression model

Example

Feature engineering

Modifying features

- ▶ idea: replace feature x_i with some function of x_i
- standarizing: replace x_i with $(x_i b_i)/a_i$
 - b_i is (approximately) mean of x_i across data set
 - a_i is (approximately) standard deviation of x_i across data set

(modified features have mean near zero, standard deviation near one) this is almost always done

• winsorizing: 'trim' values of x_i outside some range: replace x_i with

$$\begin{cases} 3 & x_i > 3 \\ x_i & |x_i| \le 3 \\ -3 & x_i < -3 \end{cases}$$

helps when there are some values that are 'outliers'

Modifying features

- log transform: replace x_i with $\log x_i$ (for $x_i > 0$)
 - $-\,$ good for features that vary over large range
 - variation for $x_i \ge 0$: replace x_i with $\log(x_i + 1)$

- Q: is transforming features a good idea?
- A: if RMS error on validation set is smaller

Augmenting features

- idea: augment original features with new functions of them
- high/low values: augment feature x_i with two new features

$$-x_i^{\rm hi} = \max\{x_i - 1, 0\}$$

- $-x_i^{\rm lo} = \min\{x_i + 1, 0\}$
- *interactions*: add features of form $x_i x_j$
- custom augmented features are common in applications
 - last high/low price
 - price/earnings ratio

- synthetic data set, with 1000 samples, 4 features
- divide into training set (800) and test set (200)
- first fit simple models, using zero or one regressor:

model	train RMS	test RMS
1	1.85	1.84
$1, x_1$	1.76	1.74
$1, x_2$	1.82	1.79
$1, x_{3}$	1.46	1.47
$1, x_4$	1.54	1.60

\hat{y} versus y, constant model

(test set)

\hat{y} versus y, single regressor models

(test set)

Basic regression

(regression with all features)

model	train RMS	test RMS
1	1.85	1.84
x_1	1.76	1.74
x_2	1.82	1.79
x_3	1.46	1.47
x_4	1.54	1.60
$1, x_1, x_2, x_3, x_4$	0.88	0.92

\hat{y} versus y, basic regression

train and test sets

Augmenting features

- ▶ add new features $\max\{x_i 1, 0\}$, $\min\{x_i + 1, 0\}$, i = 1, ..., 4
- augmented model has 13 features total

model	train RMS	test RMS
1	1.85	1.84
$1, x_1$	1.76	1.74
$1, x_2$	1.82	1.79
$1, x_{3}$	1.46	1.47
$1, x_4$	1.54	1.60
$1, x_1, x_2, x_3, x_4$	0.88	0.92
augmented	0.46	0.48

\hat{y} versus $y_{\text{-}}$ augmented regression

with augmented features on train and test sets

Regression model with augmented features

- $\hat{y} = \beta_1 + (\beta_2 x_1 + \beta_6 \max\{x_1 1, 0\} + \beta_{10} \min\{x_1 + 1, 0\}) + \cdots$
- \hat{y} is a sum of piecewise linear functions of x_i
- called a generalized additive model

