Matrices

Stephen Boyd

EE103
Stanford University

October 3, 2014
Matrices

- a *matrix* is a rectangular array of numbers, e.g.,

\[
\begin{bmatrix}
0 & 1 & -2.3 & 0.1 \\
1.3 & 4 & -0.1 & 0 \\
4.1 & -1 & 0 & 1.7
\end{bmatrix}
\]

- its *size* is given by (row dimension) \(\times \) (column dimension) e.g., matrix above is \(3 \times 4 \)

- *entries* also called *coefficients* or *elements*

- \(B_{ij} \) is \(i, j \) entry of matrix \(B \)

- \(i \) is the *row index*, \(j \) is the *column index*; indexes start at 1

- two matrices are *equal* (denoted with \(= \)) if they are the same size and corresponding entries are equal
an $m \times n$ matrix A is

- *tall* if $m > n$
- *wide* if $m < n$
- *square* if $m = n$
we consider an $n \times 1$ matrix to be an n-vector

we consider a 1×1 matrix to be a number

a $1 \times n$ matrix is called a row vector, e.g.,

$$\begin{bmatrix} 1.2 & -0.3 & 1.4 & 2.6 \end{bmatrix}$$

which is not the same as the (column) vector

$$\begin{bmatrix} 1.2 \\ -0.3 \\ 1.4 \\ 2.6 \end{bmatrix}$$
suppose A is an $m \times n$ matrix with entries

$$A_{ij}, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n$$

its jth column is (the m-vector)

$$\begin{bmatrix}
A_{1j} \\
\vdots \\
A_{mj}
\end{bmatrix}$$

its ith row is (the n-row-vector)

$$\begin{bmatrix}
A_{i1} & \cdots & A_{in}
\end{bmatrix}$$

slice of matrix: $A_{p:q,r:s}$: $(q - p + 1) \times (s - r + 1)$ matrix with entries A_{ij} with $p \leq i \leq q$, $r \leq j \leq s$
we can form *block matrices*, whose entries are matrices, such as

\[
A = \begin{bmatrix}
B & C \\
D & E
\end{bmatrix}
\]

where \(B, C, D,\) and \(E\) are matrices

- \(B, C, D,\) and \(E\) are *submatrices* or *blocks* of \(A\)
- matrices in each block row must have same height (row dimension)
- matrices in each block column must have same width (column dimension)
Column and row representation of matrix

- A is an $m \times n$ matrix
- can express as block matrix with its $(m$-vector) columns a_1, \ldots, a_n

\[A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \]

- or as block matrix with its $(n$-row-vector) rows b_1, \ldots, b_m

\[A = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \]
Examples

- **image.** X_{ij} is i, j pixel value in a monochrome image
- **rainfall data.** A_{ij} is rainfall at location i on day j
- **multiple asset returns.** R_{ij} is return of asset j in period i
- **contingency table.** A_{ij} is number of objects with first attribute i and second attribute j
- **feature matrix.** X_{ij} is value of feature i for entity j

- in each of these, what do the rows and columns mean?
Graph or relation

- A relation is a set of pairs of objects, labeled 1, ..., n, such as

\[\mathcal{R} = \{(1, 2), (1, 3), (2, 1), (2, 4), (3, 4), (4, 1)\} \]

- Same as directed graph

- Can represent as \(n \times n \) matrix with \(A_{ij} = 1 \) if \((i, j) \in \mathcal{R}\)

\[
A = \begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]
Special matrices

- $m \times n$ zero matrix has all entries zero, written as $0_{m \times n}$ or just 0
- identity matrix is square matrix with $I_{ii} = 1$ and $I_{ij} = 0$ for $i \neq j$, e.g.,

$$
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix},
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
$$

- sparse matrix: many entries are zero
 - examples: 0 and I
 - can be stored and manipulated efficiently
 - $\text{nnz}(A)$ is number of nonzero entries
Diagonal and triangular matrices

- **diagonal matrix**: square matrix with $A_{ij} = 0$ when $i \neq j$
- **$\text{diag}(a_1, \ldots, a_n)$** is diagonal matrix with $A_{ii} = a_i$, $i = 1, \ldots, n$
- **lower triangular matrix**: $A_{ij} = 0$ for $i < j$
- **upper triangular matrix**: $A_{ij} = 0$ for $i > j$
- examples:

$$\text{diag}(0.2, -3, 1.2) = \begin{bmatrix} 0.2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1.2 \end{bmatrix}, \quad \begin{bmatrix} -0.6 & 0 \\ -0.3 & 3.5 \end{bmatrix}$$
the transpose of an $m \times n$ matrix A is denoted A^T, and defined by

$$(A^T)_{ij} = A_{ji}, \quad i = 1, \ldots, n, \quad j = 1, \ldots, m$$

transpose converts column to row vectors (and vice versa)
Addition, subtraction, and scalar multiplication

- (just like vectors) we can add or subtract matrices of the same size:

\[(A + B)_{ij} = A_{ij} + B_{ij}, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n\]

(subtraction is similar)

- scalar multiplication:

\[(\alpha A)_{ij} = \alpha A_{ij}, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n\]

- many obvious properties, e.g.,
 - \(A + B = B + A\)
 - \(\alpha(A + B) = \alpha A + \alpha B\)
 - \((A + B)^T = A^T + B^T\)
Outline

Matrices

Matrix-vector multiplication

Examples
Matrix-vector product

- **matrix-vector product** of $m \times n$ matrix A, n-vector x, denoted $y = Ax$, with

 \[y_i = A_{i1}x_1 + \cdots + A_{in}x_n, \quad i = 1, \ldots, m \]

- row interpretation:

 \[y_i = b_i^T x, \quad i = 1, \ldots, m \]

 where b_1^T, \ldots, b_m^T are rows of A

- so $y = Ax$ is a ‘batch’ inner product of all rows of A with x

- example: $A\mathbf{1}$ is vector of row sums of matrix A
Column interpretation

- $y = Ax$ can be expressed as

 $$y = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$$

 where a_1, \ldots, a_n are columns of A

- so $y = Ax$ forms linear combination of columns of A, with coefficients x_1, \ldots, x_n

- important example: $A e_j = a_j$

- columns of A are linearly independent if $Ax = 0$ implies $x = 0$
Outline

Matrices

Matrix-vector multiplication

Examples
Return matrix – portfolio vector

- R is $T \times n$ matrix of asset returns
- R_{ij} is return of asset j in period i (say, in percentage)
- n-vector h gives portfolio (investments in the assets)
- T-vector Rh is time series of the portfolio return
- $\text{avg}(Rh)$ is the portfolio (mean) return, $\text{std}(Rh)$ is its risk
Feature matrix – weight vector

- $X = [x_1 \cdots x_N]$ is $n \times N$ feature matrix
- column x_j is feature n-vector for object or example j
- X_{ij} is value of feature i for example j
- n-vector w is weight vector
- $s = X^T w$ is vector of scores for each example; $s_j = x_j^T w$
Input – output matrix

- A is $m \times n$ matrix
- $y = Ax$
- n-vector x is input or action
- m-vector y is output or result
- A_{ij} is the factor by which y_i depends on x_j
- A_{ij} is the gain from input j to output i
- e.g., if A is lower triangular, then y_i only depends on x_1, \ldots, x_i
many geometric transformations and mappings of 2-D and 3-D vectors can be represented via matrix multiplication $y = Ax$

for example, rotation by θ:

$$y = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} x$$

(to get the entries, look at Ae_1 and Ae_2)