Linear Independence

Stephen Boyd

EE103
Stanford University

October 9, 2017
Outline

Linear independence

Basis

Orthonormal vectors

Gram-Schmidt algorithm
Linear dependence

- set of n-vectors $\{a_1, \ldots, a_k\}$ (with $k \geq 1$) is linearly dependent if
 \[\beta_1 a_1 + \cdots + \beta_k a_k = 0 \]
 holds for some β_1, \ldots, β_k, that are not all zero
- equivalent to: at least one a_i is a linear combination of the others
- we say ‘a_1, \ldots, a_k are linearly dependent’

- $\{a_1\}$ is linearly dependent only if $a_1 = 0$
- $\{a_1, a_2\}$ is linearly dependent only if one a_i is a multiple of the other
- for more than 2 vectors, there is no simple to state condition
Example

- the vectors

\[
a_1 = \begin{bmatrix} 0.2 \\ -7 \\ 8.6 \end{bmatrix}, \quad a_2 = \begin{bmatrix} -0.1 \\ 2 \\ -1 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 0 \\ -1 \\ 2.2 \end{bmatrix}
\]

are linearly dependent, since \(a_1 + 2a_2 - 3a_3 = 0 \)

- can express any of them as linear combination of the other two, e.g.,

\[
a_2 = (-1/2)a_1 + (3/2)a_3
\]
set of n-vectors $\{a_1, \ldots, a_k\}$ (with $k \geq 1$) is linearly independent if it is not linearly dependent, i.e.,

$$\beta_1 a_1 + \cdots + \beta_k a_k = 0$$

holds only when $\beta_1 = \cdots = \beta_k = 0$

we say ‘a_1, \ldots, a_k are linearly independent’

equivalent to: no a_i is a linear combination of the others

example: the unit n-vectors e_1, \ldots, e_n are linearly independent
Linear combinations of linearly independent vectors

- suppose x is a linear combination of linearly independent vectors a_1, \ldots, a_k,
 \[
x = \beta_1 a_1 + \cdots + \beta_k a_k
 \]
- the coefficients β_1, \ldots, β_k are \textit{unique}, \textit{i.e.}, if
 \[
x = \gamma_1 a_1 + \cdots + \gamma_k a_k
 \]
 then $\beta_i = \gamma_i$, $i = 1, \ldots, k$
- this means that (in principle) we can deduce the coefficients from x
- to see why, note that
 \[
 (\beta_1 - \gamma_1)a_1 + \cdots + (\beta_k - \gamma_k)a_k = 0
 \]
 and so (by independence) $\beta_1 - \gamma_1 = \cdots = \beta_k - \gamma_k = 0$
Independence-dimension inequality

- a linearly independent set of n-vectors can have at most n elements
- put another way:
 any set of $n + 1$ or more n-vectors is linearly dependent
Basis

- a set of n linearly independent n-vectors a_1, \ldots, a_n is called a basis
- any n-vector b can be expressed as a linear combination of them:
 \[b = \alpha_1 a_1 + \cdots + \alpha_n a_n \]
 for some $\alpha_1, \ldots, \alpha_n$
- and these coefficients are unique
- formula above is called \textit{expansion of b in the a_1, \ldots, a_n basis}
- example:
 - e_1, \ldots, e_n is a basis
 - expansion is $b = b_1 e_1 + \cdots + b_n e_n$
Outline

Linear independence

Basis

Orthonormal vectors

Gram-Schmidt algorithm
Orthonormal vectors

- set of n-vectors a_1, \ldots, a_k are (mutually) orthogonal if $a_i \perp a_j$ for $i \neq j$
- they are normalized if $\|a_i\| = 1$ for $i = 1, \ldots, k$
- they are orthonormal if both hold
- can be expressed using inner products as

$$a_i^T a_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- orthonormal sets of vectors are independent
- by independence-dimension inequality, must have $k \leq n$
- when $k = n$, a_1, \ldots, a_n are an orthonormal basis
Examples of orthonormal bases

- standard unit n-vectors e_1, \ldots, e_n
- the 3-vectors
 \[
 \begin{bmatrix}
 0 \\
 0 \\
 -1
 \end{bmatrix},
 \frac{1}{\sqrt{2}} \begin{bmatrix}
 1 \\
 1 \\
 0
 \end{bmatrix},
 \frac{1}{\sqrt{2}} \begin{bmatrix}
 1 \\
 -1 \\
 0
 \end{bmatrix}
 \]
- the 2-vectors shown below
if \(a_1, \ldots, a_n \) is an o.n. basis, we have for any \(n \)-vector \(x \)

\[x = (a_1^T x) a_1 + \cdots + (a_n^T x) a_n \]

called orthonormal expansion of \(x \) (in the o.n. basis)

to verify formula, take inner product of both sides with \(a_i \)
Outline

Linear independence

Basis

Orthonormal vectors

Gram-Schmidt algorithm
Gram-Schmidt (orthogonalization) algorithm

- an algorithm to check if a_1, \ldots, a_k are linearly independent
- we’ll see later it has many other uses
Gram-Schmidt algorithm

given \(n \)-vectors \(a_1, \ldots, a_k \)

for \(i = 1, \ldots, k \),

1. Orthogonalization. \(\tilde{q}_i = a_i - (q_1^T a_i)q_1 - \cdots - (q_{i-1}^T a_i)q_{i-1} \)
2. Test for dependence. if \(\tilde{q}_i = 0 \), quit
3. Normalization. \(q_i = \frac{\tilde{q}_i}{\|\tilde{q}_i\|} \)

- if G-S does not stop early (in step 2), \(a_1, \ldots, a_k \) are linearly independent
- if G-S stops early in iteration \(i = j \), then \(a_j \) is a linear combination of \(a_1, \ldots, a_{j-1} \) (so \(a_1, \ldots, a_k \) are linearly dependent)
Gram-Schmidt algorithm
Analysis

let’s show by induction that q_1, \ldots, q_i are orthonormal

▶ assume it’s true for $i - 1$
▶ orthogonalization step ensures that

$$\tilde{q}_i \perp q_1, \ldots, \tilde{q}_i \perp q_{i-1}$$

▶ to see this, take inner product of both sides with q_j, $j < i$

$$q_j^T \tilde{q}_i = q_j^T a_i - (q_1^T a_i)(q_j^T q_1) - \cdots - (q_{i-1}^T a_i)(q_j^T q_{i-1})$$

$$= q_j^T a_i - q_j^T a_i = 0$$

▶ so $q_i \perp q_1, \ldots, q_i \perp q_{i-1}$
▶ normalization step ensures that $\|q_i\| = 1$
Analysis

assuming G-S has not terminated before iteration \(i \)

- \(a_i \) is a linear combination of \(q_1, \ldots, q_i \):
 \[
 a_i = \|\tilde{q}_i\|q_i + (q_1^T a_i)q_1 + \cdots + (q_{i-1}^T a_i)q_{i-1}
 \]

- \(q_i \) is a linear combination of \(a_1, \ldots, a_i \): by induction on \(i \),
 \[
 q_i = \left(1/\|\tilde{q}_i\|\right)\left(a_i - (q_1^T a_i)q_1 - \cdots - (q_{i-1}^T a_i)q_{i-1} \right)
 \]

and (by induction assumption) each \(q_1, \ldots, q_{i-1} \) is a linear combination of \(a_1, \ldots, a_{i-1} \)
Early termination

suppose G-S terminates in step \(j \)

- \(a_j \) is linear combination of \(q_1, \ldots, q_{j-1} \)

\[
a_j = (q_1^T a_j)q_1 + \cdots + (q_{j-1}^T a_j)q_{j-1}
\]

- and each of \(q_1, \ldots, q_{j-1} \) is linear combination of \(a_1, \ldots, a_{j-1} \)

- so \(a_j \) is a linear combination of \(a_1, \ldots, a_{j-1} \)
Complexity of Gram-Schmidt algorithm

- step 1 of iteration i requires $i - 1$ inner products,

$$q_1^T a_i, \ldots, q_{i-1}^T a_i$$

which costs $(i - 1)(2n - 1)$ flops

- $n(i - 1)$ flops to compute \tilde{q}_i

- $3n$ flops to compute $\|\tilde{q}_i\|$ and q_i

- total is

$$\sum_{i=1}^{k} ((4n - 1)(i - 1) + 3n) = (4n - 1)\frac{k(k - 1)}{2} + 3nk \approx 2nk^2$$

using $\sum_{i=1}^{k} (i - 1) = k(k - 1)/2$