Linear Independence

Stephen Boyd

EE103
Stanford University

October 11, 2016
Outline

Linear independence

Basis

Orthonormal vectors

Gram-Schmidt algorithm
set of n-vectors $\{a_1, \ldots, a_k\}$ (with $k \geq 1$) is \textit{linearly dependent} if

$$\beta_1 a_1 + \cdots + \beta_k a_k = 0$$

holds for some β_1, \ldots, β_k, that are not all zero

equivalent to: at least one a_i is a linear combination of the others
we say ‘a_1, \ldots, a_k are linearly dependent’

$\{a_1\}$ is linearly dependent only if $a_1 = 0$

$\{a_1, a_2\}$ is linearly dependent only if one a_i is a multiple of the other
for more than 2 vectors, there is no simple to state condition
Example

- the vectors

\[
\begin{align*}
a_1 &= \begin{bmatrix} 0.2 \\ -7 \\ 8.6 \end{bmatrix}, & a_2 &= \begin{bmatrix} -0.1 \\ 2 \\ -1 \end{bmatrix}, & a_3 &= \begin{bmatrix} 0 \\ -1 \\ 2.2 \end{bmatrix}
\end{align*}
\]

are linearly dependent, since \(a_1 + 2a_2 - 3a_3 = 0\)

- can express any of them as linear combination of the other two, e.g.,
\[a_2 = (-1/2)a_1 + (3/2)a_3\]
Linear independence

- set of n-vectors \(\{a_1, \ldots, a_k\} \) (with $k \geq 1$) is *linearly independent* if it is not linearly dependent, i.e.,

\[
\beta_1 a_1 + \cdots + \beta_k a_k = 0
\]

holds only when $\beta_1 = \cdots = \beta_k = 0$

- we say ‘a_1, \ldots, a_k are linearly independent’

- equivalent to: no a_i is a linear combination of the others

- example: the unit n-vectors e_1, \ldots, e_n are linearly independent
Linear combinations of linearly independent vectors

- suppose x is a linear combination of linearly independent vectors a_1, \ldots, a_k,
 \[x = \beta_1 a_1 + \cdots + \beta_k a_k \]

- the coefficients β_1, \ldots, β_k are unique, i.e., if
 \[x = \gamma_1 a_1 + \cdots + \gamma_k a_k \]
 then $\beta_i = \gamma_i$, $i = 1, \ldots, k$

- this means that (in principle) we can deduce the coefficients from x

- to see why, note that
 \[(\beta_1 - \gamma_1)a_1 + \cdots + (\beta_k - \gamma_k)a_k = 0 \]
 and so (by independence) $\beta_1 - \gamma_1 = \cdots = \beta_k - \gamma_k = 0$
Outline

Linear independence

Basis

Orthonormal vectors

Gram-Schmidt algorithm
Independence-dimension inequality

- a linearly independent set of n-vectors can have at most n elements
- put another way:
 any set of $n + 1$ or more n-vectors is linearly dependent
a set of n linearly independent n-vectors a_1, \ldots, a_n is called a basis

any n-vector b can be expressed as a linear combination of them:

$$b = \alpha_1 a_1 + \cdots + \alpha_n a_n$$

for some $\alpha_1, \ldots, \alpha_n$

and these coefficients are unique

formula above is called \textit{expansion of b in the a_1, \ldots, a_n basis}

example:

- e_1, \ldots, e_n is a basis
- expansion is $b = b_1 e_1 + \cdots + b_n e_n$
Outline

Linear independence

Basis

Orthonormal vectors

Gram-Schmidt algorithm
Orthonormal vectors

- set of \(n\)-vectors \(a_1, \ldots, a_k\) are (mutually) orthogonal if \(a_i \perp a_j\) for \(i \neq j\)
- they are normalized if \(\|a_i\| = 1\) for \(i = 1, \ldots, k\)
- they are orthonormal if both hold
- can be expressed using inner products as

\[
a_i^T a_j = \begin{cases}
1 & i = j \\
0 & i \neq j
\end{cases}
\]

- orthonormal sets of vectors are independent
- by independence-dimension inequality, must have \(k \leq n\)
- when \(k = n\), \(a_1, \ldots, a_n\) are an orthonormal basis
Examples of orthonormal bases

- Standard unit n-vectors e_1, \ldots, e_n
- The 3-vectors
 \[
 \begin{bmatrix}
 0 \\
 0 \\
 -1
 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix}
 1 \\
 0 \\
 1
 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix}
 1 \\
 0 \\
 -1
 \end{bmatrix}
 \]
- The 2-vectors shown below
if a_1, \ldots, a_n is an o.n. basis, we have for any n-vector x

$$x = (a_1^T x)a_1 + \cdots + (a_n^T x)a_n$$

called orthonormal expansion of x (in the o.n. basis)

to verify formula, take inner product of both sides with a_i
Outline

Linear independence

Basis

Orthonormal vectors

Gram-Schmidt algorithm
Gram-Schmidt (orthogonalization) algorithm

- an algorithm to check if a_1, \ldots, a_k are linearly independent
- we’ll see later it has many other uses
Gram-Schmidt algorithm

given \(n \)-vectors \(a_1, \ldots, a_k \)

for \(i = 1, \ldots, k \),

1. Orthogonalization. \(\tilde{q}_i = a_i - (q_1^T a_i)q_1 - \cdots - (q_{i-1}^T a_i)q_{i-1} \)

2. Test for dependence. if \(\tilde{q}_i = 0 \), quit

3. Normalization. \(q_i = \tilde{q}_i / \|\tilde{q}_i\| \)

▶ if G-S does not stop early (in step 2), \(a_1, \ldots, a_k \) are linearly independent

▶ if G-S stops early in iteration \(i = j \), then \(a_j \) is a linear combination of \(a_1, \ldots, a_{j-1} \) (so \(a_1, \ldots, a_k \) are linearly dependent)
Analysis

let’s show by induction that q_1, \ldots, q_i are orthonormal

- assume it’s true for $i - 1$
- orthogonalization step ensures that

$$
\tilde{q}_i \perp q_1, \ldots, \tilde{q}_i \perp q_{i-1}
$$

- to see this, take inner product of both sides with $q_j, j < i$

$$
q_j^T \tilde{q}_i = q_j^T a_i - (q_1^T a_i)(q_j^T q_1) - \cdots - (q_{i-1}^T a_i)(q_j^T q_{i-1})
= q_j^T a_i - q_j^T a_i = 0
$$

- so $q_i \perp q_1, \ldots, q_i \perp q_{i-1}$
- normalization step ensures that $\|q_i\| = 1$

Gram-Schmidt algorithm
Analysis

assuming G-S has not terminated before iteration i

- a_i is a linear combination of q_1, \ldots, q_i:

 $$a_i = \|\tilde{q}_i\|q_i + (\tilde{q}_1^Ta_i)q_1 + \cdots + (\tilde{q}_{i-1}^Ta_i)q_{i-1}$$

- q_i is a linear combination of a_1, \ldots, a_i: by induction on i,

 $$q_i = \left(1/\|\tilde{q}_i\| \right) \left(a_i - (\tilde{q}_1^Ta_i)q_1 - \cdots - (\tilde{q}_{i-1}^Ta_i)q_{i-1} \right)$$

and (by induction assumption) each $q_1, \ldots, q_{i-1} \text{ is a linear combination of } a_1, \ldots, a_{i-1}$
Early termination

suppose G-S terminates in step j

- a_j is linear combination of q_1, \ldots, q_{j-1}
 \[
 a_j = (q_1^T a_i)q_1 + \cdots + (q_{j-1}^T a_j)q_{j-1}
 \]

- and each of q_1, \ldots, q_{j-1} is linear combination of a_1, \ldots, a_{j-1}

- so a_j is a linear combination of a_1, \ldots, a_{j-1}
Complexity of Gram-Schmidt algorithm

- step 1 of iteration i requires $i - 1$ inner products,

\[q_1^T a_i, \ldots, q_{i-1}^T a_i \]

which costs $(i - 1)(2n - 1)$ flops

- $n(i - 1)$ flops to compute \tilde{q}_i

- $3n$ flops to compute $\|\tilde{q}_i\|$ and q_i

- total is

\[
\sum_{i=1}^{k} \left((4n - 1)(i - 1) + 3n \right) = (4n - 1) \frac{k(k - 1)}{2} + 3nk \approx 2nk^2
\]

using $\sum_{i=1}^{k} (i - 1) = k(k - 1)/2$