Multi-Objective Least-Squares

Stephen Boyd

EE103
Stanford University

November 4, 2014
Outline

Multi-objective least-squares problem

Control

Estimation and inversion

Regularized data-fitting
Multi-objective least-squares

- goal: choose n-vector x so that k norm squared objectives
 \[J_1 = \| A_1 x - b_1 \|^2, \ldots, J_k = \| A_k x - b_k \|^2 \]
 are all small
- A_i is an $m_i \times n$ matrix, b_i is an m_i-vector, $i = 1, \ldots, k$
- J_i are the objectives in a multi-objective optimization problem (also called a multi-criterion problem)
- could choose x to minimize any one J_i, but we want one x that makes them all small
choose positive weights $\lambda_1, \ldots, \lambda_k$ and form weighted sum objective

$$J = \lambda_1 J_1 + \cdots + \lambda_k J_k = \lambda_1 \|A_1 x - b_1\|^2 + \cdots + \lambda_k \|A_k x - b_k\|^2$$

we’ll choose x to minimize J

we can take $\lambda_1 = 1$, and call J_1 the primary objective

interpretation of λ_i: how much we care about J_i being small, relative to primary objective

for a bi-criterion problem, we will minimize

$$J_1 + \lambda J_2 = \|A_1 x - b_1\|^2 + \lambda \|A_2 x - b_2\|^2$$

Multi-objective least-squares problem
Weighted sum minimization via stacking

- write weighted-sum objective as
 \[
 J = \left\| \begin{bmatrix}
 \sqrt{\lambda_1} (A_1 x - b_1) \\
 \vdots \\
 \sqrt{\lambda_k} (A_k x - b_k)
 \end{bmatrix} \right\|^2
 \]

- so we have \(J = \| \tilde{A} x - \tilde{b} \|^2 \), with
 \[
 \tilde{A} = \begin{bmatrix}
 \sqrt{\lambda_1} A_1 \\
 \vdots \\
 \sqrt{\lambda_k} A_k
 \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix}
 \sqrt{\lambda_1} b_1 \\
 \vdots \\
 \sqrt{\lambda_k} b_k
 \end{bmatrix}
 \]

- so we can minimize \(J \) using basic (‘single-criterion’) least-squares
Weighted sum solution

- assuming columns of \tilde{A} are independent,

$$
\hat{x} = (\tilde{A}^T \tilde{A})^{-1} \tilde{A}^T \tilde{b} \\
= (\lambda_1 A_1^T A_1 + \cdots + \lambda_k A_k^T A_k)^{-1}(\lambda_1 A_1^T b_1 + \cdots + \lambda_k A_k^T b_k)
$$

- can compute \hat{x} via QR factorization of \tilde{A}
- A_i can be wide, or have dependent columns
Optimal trade-off curve

- bi-criterion problem with objectives J_1, J_2
- let $\hat{x}(\lambda)$ be minimizer of $J_1 + \lambda J_2$
- called Pareto optimal: there is no point x that satisfies
 \[J_1(x) < J_1(\hat{x}(\lambda)), \quad J_2(x) < J_2(\hat{x}(\lambda)) \]
 i.e., no other point x beats \hat{x} on both objectives
- optimal trade-off curve: $(J_1(\hat{x}(\lambda)), J_2(\hat{x}(\lambda)))$ for $\lambda > 0$
Example

- A_1 and A_2 both 10×5
Objectives versus λ

- J_1 (solid); J_2 (dashed)
Optimal trade-off curve

Multi-objective least-squares problem
Using multi-objective least-squares

- identify the primary objective
 - the basic quantity we want to minimize
- choose one or more secondary objectives
 - quantities we’d also like to be small, if possible
 - e.g., size of x, roughness of x, distance from some given point
- tweak/tune the weights until we like (or can tolerate) $\hat{x}(\lambda)$
- for bi-criterion problem with $J = J_1 + \lambda J_2$:
 - if J_2 is too big, increase λ
 - if J_1 is too big, decrease λ
Outline

Multi-objective least-squares problem

Control

Estimation and inversion

Regularized data-fitting
Control

- n-vector x corresponds to actions or inputs
- m-vector y corresponds to results or outputs
- inputs and outputs are related by affine input-output model
 \[y = Ax + b \]
- A and b are known (from analytical models, data fitting . . .)
- the goal is to choose x (which determines y), to optimize multiple objectives on x and y
Multi-objective control

- Typical primary objective: $J_1 = \|y - y^{\text{des}}\|^2$, where y^{des} is a given desired or target output.

- Typical secondary objectives:
 - x is small: $J_2 = \|x\|^2$
 - x is not far from a nominal input: $J_2 = \|x - x^{\text{nom}}\|^2$
Robust control

- we have K different input-output models (a.k.a. scenarios)

$$y^{(k)} = A^{(k)} x + b^{(k)}, \quad k = 1, \ldots, K$$

- these represent uncertainty in the system

- $y^{(k)}$ is the output with input x, if system model k is correct

- average cost across the models:

$$\frac{1}{K} \sum_{k=1}^{K} \|y^{(k)} - y^{\text{des}}\|^2$$

- can add terms for x as well, e.g., $\lambda \|x\|^2$

- yields to choice of x that does well under all scenarios
Outline

Multi-objective least-squares problem

Control

Estimation and inversion

Regularized data-fitting
measurement model: \(y = Ax + v \)

- \(n \)-vector \(x \) contains parameters we want to estimate
- \(m \)-vector \(y \) contains the measurements
- \(m \)-vector \(v \) are (unknown) noises or measurement errors
- \(m \times n \) matrix \(A \) connects parameters to measurements

basic least-squares estimation: assuming \(v \) is small (and \(A \) has independent columns), we guess \(x \) by minimizing

\[
J_1 = \| Ax - y \|^2
\]
Regularized inversion

- can get far better results by incorporating prior information about x into estimation, e.g.,
 - x should be not too large
 - x should be smooth
- express these as secondary objectives:
 - $J_2 = \|x\|^2$ (‘Tikonov regularization’)
 - $J_2 = \|Dx\|^2$
- we minimize $J_1 + \lambda J_2$
- adjust λ until you like the results
- curve of $\hat{x}(\lambda)$ versus λ is called regularization path
- with Tikhonov regularization, works even when A has dependent columns (e.g., when it is wide)
Image de-blurring

- x is an image, A is a blurring operator, and $y = Ax + v$ is a blurred, noisy image
- least-squares de-blurring: choose x to minimize

$$\|Ax - y\|^2 + \lambda(\|D_v x\|^2 + \|D_h x\|^2)$$

D_v, D_h are vertical and horizontal differencing operations
- λ controls smoothing of de-blurred image
Example

- left: blurred, noisy image
- right: regularized inversion with $\lambda = 0.007$
Regularization path

\[\lambda = 10^{-6}, \lambda = 10^{-4} \]
Regularization path

- $\lambda = 10^{-2}, \lambda = 10^0$
Outline

Multi-objective least-squares problem

Control

Estimation and inversion

Regularized data-fitting
Motivation for regularization

▶ consider data-fitting model (of relationship $y = f(x)$)

$$\hat{f}(x) = \theta_1 f_1(x) + \cdots + \theta_p f_p(x)$$

with $f_1(x) = 1$

▶ θ_i is the sensitivity of $\hat{f}(x)$ to $f_i(x)$

▶ so large θ_i means the model is very sensitive to $f_i(x)$

▶ θ_1 is an exception, since $f_1(x) = 1$ never varies

▶ so, we don’t want $\theta_2, \ldots, \theta_p$ to be too large
Regularized data-fitting

- Suppose we have data \((x_1, y_1), \ldots, (x_N, y_N)\)
- Express fitting error as \(A\theta - y\)
- Regularized data-fitting: choose \(x\) to minimize
 \[
 \|A\theta - y\|^2 + \lambda\|\theta_{2:p}\|^2
 \]
- \(\lambda > 0\) is the regularization parameter
- For regression model \(\hat{y} = X^T\beta + v1\), we minimize
 \[
 \|X^T\beta + v1 - y\|^2 + \lambda\|\beta\|^2
 \]
- Choose \(\lambda\) by validation on a test set