Inverses

Stephen Boyd

EE103
Stanford University

October 28, 2017
Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse
Left inverses

- A number x that satisfies $xa = 1$ is called the inverse of a
- An inverse (i.e., $1/a$) exists if and only if $a \neq 0$, and is unique.
- A matrix X that satisfies $XA = I$ is called a *left inverse* of A (and we say that A is *left-invertible*).
- Example: the matrix

\[
A = \begin{bmatrix}
-3 & -4 \\
4 & 6 \\
1 & 1
\end{bmatrix}
\]

has two different left inverses:

\[
B = \frac{1}{9} \begin{bmatrix}
-11 & -10 & 16 \\
7 & 8 & -11
\end{bmatrix}, \quad C = \frac{1}{2} \begin{bmatrix}
0 & -1 & 6 \\
0 & 1 & -4
\end{bmatrix}
\]
if A has a left inverse C then the columns of A are independent

to see this: if $Ax = 0$ and $CA = I$ then

$$0 = C0 = C(Ax) = (CA)x =Ix =x$$

we’ll see later the converse is also true, so

a matrix is left-invertible if and only if its columns are independent

matrix generalization of

a number is invertible if and only if it is nonzero

so left-invertible matrices are tall or square
Solving linear equations with a left inverse

- Suppose $Ax = b$, and A has a left inverse C
- Then $Cb = C(Ax) = (CA)x = Ix = x$
- So multiplying the right-hand side by a left inverse yields the solution
Example

\[A = \begin{bmatrix} -3 & -4 \\ 4 & 6 \\ 1 & 1 \end{bmatrix} \text{ and two different left inverses,} \]

\[B = \frac{1}{9} \begin{bmatrix} -11 & -10 & 16 \\ 7 & 8 & -11 \end{bmatrix}, \quad C = \frac{1}{2} \begin{bmatrix} 0 & -1 & 6 \\ 0 & 1 & -4 \end{bmatrix} \]

- over-determined equations \(Ax = (1, -2, 0) \) have (unique) solution \(x = (1, -1) \)
- we get \(B(1, -2, 0) = (1, -1) \)
- and also \(C(1, -2, 0) = (1, -1) \)
a matrix X that satisfies $AX = I$ is a right inverse of A (and we say that A is right-invertible)

A is right-invertible if and only if A^T is left-invertible:

$$AX = I \iff (AX)^T = I \iff X^T A^T = I$$

so we conclude

A is right-invertible if and only if its rows are linearly independent

right-invertible matrices are wide or square
Solving linear equations with a right inverse

▶ suppose A has a right inverse B
▶ consider the (square or underdetermined) equations $Ax = b$
▶ $x = Bb$ is a solution:

$$Ax = A(Bb) = (AB)b = Ib = b$$

▶ so $Ax = b$ has a solution for any b
Example

- same A, B, C in example above
- C^T and B^T are both right inverses of A^T
- under-determined equations $A^T x = (1, 2)$ has (different) solutions
 - $B^T (1, 2) = (1/3, 2/3, 38/9)$
 - $C^T (1, 2) = (0, 1/2, -1)$

(two are many other solutions as well)
Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse
if A has a left and a right inverse, they are unique and equal (and we say that A is invertible)

so A must be square

to see this: if $AX = I$, $YA = I$

$$X = IX = (YA)X = Y(AX) = YI = Y$$

we denote them by A^{-1}: $A^{-1}A = AA^{-1} = I$

inverse of inverse: $(A^{-1})^{-1} = A$
Solving square systems of linear equations

- suppose \(A \) is invertible
- for any \(b \), \(Ax = b \) has the unique solution \(x = A^{-1}b \)
- matrix generalization of simple scalar equation \(ax = b \) having solution \(x = (1/a)b \) (for \(a \neq 0 \))
- simple-looking formula \(x = A^{-1}b \) is basis for many applications
Invertible matrices

the following are equivalent for a square matrix A:

- A is invertible
- columns of A are linearly independent
- rows of A are linearly independent
- A has a left inverse
- A has a right inverse

if any of these hold, all others do
Examples

- $I^{-1} = I$
- If Q is orthogonal, i.e., $Q^T Q = I$, then $Q^{-1} = Q^T$
- 2×2 matrix A is invertible if and only if $A_{11} A_{22} \neq A_{12} A_{21}$

$$A^{-1} = \frac{1}{A_{11} A_{22} - A_{12} A_{21}} \begin{bmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{bmatrix}$$

- You need to know this formula
- There are similar but much more complicated formulas for larger matrices (and no, you do not need to know them)
Non-obvious example

\[
A = \begin{bmatrix}
1 & -2 & 3 \\
0 & 2 & 2 \\
-3 & -4 & -4
\end{bmatrix}
\]
is invertible, with inverse

\[
A^{-1} = \frac{1}{30} \begin{bmatrix}
0 & -20 & -10 \\
-6 & 5 & -2 \\
6 & 10 & 2
\end{bmatrix}.
\]

▶ verified by checking \(AA^{-1} = I \) (or \(A^{-1}A = I \))
▶ we’ll soon see how to compute the inverse
Properties

- \((AB)^{-1} = B^{-1}A^{-1}\) (provided inverses exist)
- \((A^T)^{-1} = (A^{-1})^T\) (sometimes denoted \(A^{-T}\))
- Negative matrix powers: \((A^{-1})^k\) is denoted \(A^{-k}\)
- With \(A^0 = I\), identity \(A^k A^l = A^{k+l}\) holds for any integers \(k, l\)
Triangular matrices

- lower triangular \(L \) with nonzero diagonal entries is invertible
- so see this, write \(Lx = 0 \) as

\[
\begin{align*}
L_{11} x_1 & = 0 \\
L_{21} x_1 + L_{22} x_2 & = 0 \\
& \quad \vdots \\
L_{n1} x_1 + L_{n2} x_2 + \cdots + L_{n,n-1} x_{n-1} + L_{nn} x_n & = 0
\end{align*}
\]

- from first equation, \(x_1 = 0 \) (since \(L_{11} \neq 0 \))
- second equation reduces to \(L_{22} x_2 = 0 \), so \(x_2 = 0 \) (since \(L_{22} \neq 0 \))
- and so on

this shows columns of \(L \) are independent, so \(L \) is invertible

- upper triangular \(R \) with nonzero diagonal entries is invertible
Inverse via QR factorization

- suppose A is square and invertible
- so its columns are linearly independent
- so Gram-Schmidt gives QR factorization
 - $A = QR$
 - Q is orthogonal: $Q^T Q = I$
 - R is upper triangular with positive diagonal entries, hence invertible
- so we have

$$A^{-1} = (QR)^{-1} = R^{-1} Q^{-1} = R^{-1} Q^T$$
Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse
Back substitution

- suppose R is upper triangular with nonzero diagonal entries
- write out $Rx = b$ as

$$R_{11}x_1 + R_{12}x_2 + \cdots + R_{1,n-1}x_{n-1} + R_{1n}x_n = b_1$$

$$\vdots$$

$$R_{n-1,n-1}x_{n-1} + R_{n-1,n}x_n = b_{n-1}$$

$$R_{nn}x_n = b_n$$

- from last equation we get $x_n = b_n/R_{nn}$
- from 2nd to last equation we get

$$x_{n-1} = (b_{n-1} - R_{n-1,n}x_n)/R_{n-1,n-1}$$

- continue to get $x_{n-2}, x_{n-3}, \ldots, x_1$
Back substitution

- called *back substitution* since we find the variables in reverse order, substituting the already known values of x_i
- computes $x = R^{-1}b$
- complexity:
 - first step requires 1 flop (division)
 - 2nd step needs 3 flops
 - ith step needs $2i - 1$ flops
- total is $1 + 3 + \cdots + (2n - 1) = n^2$ flops
Solving linear equations via QR factorization

- assuming A is invertible, let’s solve $Ax = b$, i.e., compute $x = A^{-1}b$
- with QR factorization $A = QR$, we have $A^{-1} = (QR)^{-1} = R^{-1}Q^T$
- compute $x = R^{-1}(Q^Tb)$ by back substitution
Solving linear equations via QR factorization

given an \(n \times n \) invertible matrix \(A \) and an \(n \)-vector \(b \)

1. **QR factorization.** Compute the QR factorization \(A = QR \).
2. Compute \(Q^T b \).
3. **Back substitution.** Solve the triangular equation \(Rx = Q^T b \) using back substitution.

- complexity \(2n^3 \) (step 1), \(2n^2 \) (step 2), \(n^2 \) (step 3)
- total is \(2n^3 + 3n^2 \approx 2n^3 \)
Multiple right-hand sides

- let’s solve $Ax_i = b_i$, $i = 1, \ldots, k$, with A invertible
- carry out QR factorization once ($2n^3$ flops)
- for $i = 1, \ldots, k$, solve $Rx_i = Q^Tb_i$ via back substitution ($3kn^2$ flops)
- total is $2n^3 + 2kn^2$ flops
- if k is small compared to n, same cost as solving one set of equations
Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse

Examples
let's find coefficients of a cubic polynomial

\[p(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3 \]

that satisfies

\[p(-1.1) = b_1, \quad p(-0.4) = b_2, \quad p(0.1) = b_3, \quad p(0.8) = b_4 \]

write as \(Ac = b \), with

\[
A = \begin{bmatrix}
1 & -1.1 & (-1.1)^2 & (-1.1)^3 \\
1 & -0.4 & (-0.4)^2 & (-0.4)^3 \\
1 & 0.1 & (0.1)^2 & (0.1)^3 \\
1 & 0.8 & (0.8)^2 & (0.8)^3 \\
\end{bmatrix}
\]
Polynomial interpolation

- (unique) coefficients given by $c = A^{-1}b$, with

$$A^{-1} = \begin{bmatrix}
-0.0201 & 0.2095 & 0.8381 & -0.0276 \\
0.1754 & -2.1667 & 1.8095 & 0.1817 \\
0.3133 & 0.4762 & -1.6667 & 0.8772 \\
-0.6266 & 2.381 & -2.381 & 0.6266
\end{bmatrix}$$

- so, e.g., c_1 is not very sensitive to b_1 or b_4
- first column gives coefficients of polynomial that satisfies

$$p(-1.1) = 1, \quad p(-0.4) = 0, \quad p(0.1) = 0, \quad p(0.8) = 0$$

called (first) Lagrange polynomial
Example

$p(x)$

Examples
Lagrange polynomials
Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse
Invertibility of Gram matrix

- A has independent columns $\iff A^T A$ is invertible
- to see this, we’ll show that $Ax = 0 \iff A^T Ax = 0$
- \implies: if $Ax = 0$ then $(A^T A)x = A^T (Ax) = A^T 0 = 0$
- \impliedby: if $(A^T A)x = 0$ then

$$0 = x^T (A^T A)x = (Ax)^T (Ax) = \|Ax\|^2 = 0$$

so $Ax = 0$
the \textit{pseudo-inverse} of A with independent columns is

$$A^\dagger = (A^T A)^{-1} A^T$$

it is a left inverse of A:

$$A^\dagger A = (A^T A)^{-1} A^T A = (A^T A)^{-1}(A^T A) = I$$

(we’ll soon see that it’s a very important left inverse of A)

reduces to A^{-1} when A is square:

$$A^\dagger = (A^T A)^{-1} A^T = A^{-1} A^{-T} A^T = A^{-1} I = A^{-1}$$
Pseudo-inverse of wide matrix

- if A is wide, with independent rows, AA^T is invertible
- pseudo-inverse is defined as
 \[
 A^\dagger = A^T (AA^T)^{-1}
 \]
- A^\dagger is a right inverse of A:
 \[
 AA^\dagger = AA^T (AA^T)^{-1} = I
 \]
 (we’ll see later it is an important right inverse)
- reduces to A^{-1} when A is square:
 \[
 A^T (AA^T)^{-1} = A^T A^{-T} A^{-1} = A^{-1}
 \]
Pseudo-inverse via QR factorization

- Suppose A has independent columns, $A = QR$
- Then $A^T A = (QR)^T (QR) = R^T Q^T QR = R^T R$
- So
 \[
 A^\dagger = (A^T A)^{-1} A^T = (R^T R)^{-1} (QR)^T = R^{-1} R^{-T} R^T Q^T = R^{-1} Q^T
 \]
- Can compute A^\dagger using back substitution on columns of Q^T

- For A with independent rows, $A^\dagger = QR^{-T}$