Linear-Quadratic Estimation

Jenny Hong Stephen Boyd

EE103 Stanford University

November 30, 2016

Outline

Least squares state estimation

Example

Missing measurements

State estimation

dynamic system model:

$$x_{t+1} = Ax_t + Bw_t, \quad y_t = Cx_t + v_t, \quad t = 1, 2, \dots$$

- $ightharpoonup x_t$ is state (n-vector)
- $ightharpoonup y_t$ is measurement (p-vector)
- $ightharpoonup v_t$ is measurement noise or measurement residual (p-vector)
- w_t is input or process noise (m-vector)
- we know A, B, C, and measurements y_1, \ldots, y_T
- $ightharpoonup w_t, v_t$ are unknown, but assumed small
- ▶ state estimation: estimate/guess $x_1, ..., x_T$

Some common variations

- $ightharpoonup x_1$ is known
- $ightharpoonup y_t$ not known for some t's ('missing measurements')
- \blacktriangleright matrices $A,\ B,\ C$ are time-varying

Least squares state estimation

▶ choose estimates \hat{x}_t , \hat{w}_t , \hat{v}_t by solving linearly constrained least squares problem

$$\begin{array}{ll} \text{minimize} & \sum_{t=1}^{T}\|v_{t}\|_{2}^{2}+\lambda\|w_{t}\|_{2}^{2}\\ \text{subject to} & x_{t+1}=Ax_{t}+Bw_{t}, \quad t=1,\ldots,T-1\\ & y_{t}=Cx_{t}+v_{t}, \quad t=1,\ldots,T-1 \end{array}$$

- ightharpoonup variables are $x_1, \ldots, x_T, w_1, \ldots, w_T, v_1, \ldots, v_T$
- lacktriangledown $\lambda>0$ is a parameter, trades off measurement and process errors

Outline

Least squares state estimation

Example

Missing measurements

Running example

- we'll use a running example of a vehicle moving in 2-D
- $ightharpoonup x_t = (p_t, z_t)$
 - 2-vector p_t is the 2-D position
 - 2-vector z_t is the 2-D velocity
- dynamics

$$p_{t+1} = p_t + z_t, \quad z_{t+1} = z_t + w_t$$

- ightharpoonup so w_t is the force on the vehicle, which we generate
- $y_t = p_t + v_t$; we generate measurement noise v_t randomly
- T = 100
- we generate the data, so we know the true values $x_1^{\rm true}, x_2^{\rm true}, \ldots$ (in real applications, of course, you don't know the true state)

Measurements and true positions

- $ightharpoonup y_t$ shown as red crosses
- $y_t^{\mathrm{true}} = C x_t^{\mathrm{true}}$ ('true' position) shown in green

Least squares state estimation

• blue curve is $\hat{y}_t = C\hat{x}_t$, for $\lambda = 0.07$

True and estimated state trajectories

- ▶ solid lines show true trajectory $(x_t^{\text{true}})_i$
- ▶ dashed lines show estimates $(\hat{x}_t)_i$

Varying λ

• state trajectory estimates using $\lambda = 1, 10, 100$

Varying λ

▶ objective is $J_1 + \lambda J_2$, $J_1 = \sum_{t=1}^{T} \|v_t\|_2^2$, $J_2 = \sum_{t=1}^{T} \|w_t\|_2^2$

Outline

Least squares state estimation

Example

Missing measurements

Missing measurements

- ▶ suppose we only get measurements y_t for $t \in \mathcal{T} \subseteq \{1, \dots, T-1\}$
- we form state estimate by solving problem

minimize
$$\sum_{t \in \mathcal{T}} \|v_t\|_2^2 + \lambda \sum_{t=1}^T \|w_t\|_2^2$$
 subject to
$$x_{t+1} = Ax_t + Bw_t, \quad t = 1, \dots, T-1$$

$$y_t = Cx_t + v_t, \quad t \in \mathcal{T}$$

with variables x_1, \ldots, x_T , w_1, \ldots, w_T , and v_t for $t \in \mathcal{T}$

a linearly constrained least squares problem

- ▶ same example, 20% of measurements removed
- ▶ blue curve shows $C\hat{x}_t$, $\lambda = 8$
- ▶ black curve shows estimate using all measurements

Cross validation

- \blacktriangleright randomly remove 20% (say) of the measurements and use as test measurements
- for many values of λ
 - carry out state estimation using other (training) measurements
 - evaluate RMS measurement residuals on test set
- ightharpoonup choose λ to (approximately) minimize the RMS test residuals

- lacktriangle training and test RMS errors versus λ
- \blacktriangleright confirms λ between 2 and 5 is good choice

- \blacktriangleright result shown by $\lambda=4.64$
- ightharpoonup training y_t shown as red crosses, test y_t shown as red circles

